title | date | category | has_math |
---|---|---|---|
Unicidad del elemento neutro en los grupos |
2024-05-10 06:00:00 UTC+02:00 |
Grupos |
true |
[mathjax]
Demostrar con Lean4 que un grupo sólo posee un elemento neutro.
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Algebra.Group.Basic
variable {G : Type} [Group G]
example
(e : G)
(h : ∀ x, x * e = x)
: e = 1 :=
sorry
Sea \(e ∈ G\) tal que \[ (∀ x)[x·e = x] \tag{1} \] Entonces, \begin{align} e &= 1.e &&\text{[porque 1 es neutro]} \\ &= 1 &&\text{[por (1)]} \end{align}
import Mathlib.Algebra.Group.Basic
variable {G : Type} [Group G]
-- 1ª demostración
-- ===============
example
(e : G)
(h : ∀ x, x * e = x)
: e = 1 :=
calc e = 1 * e := (one_mul e).symm
_ = 1 := h 1
-- 2ª demostración
-- ===============
example
(e : G)
(h : ∀ x, x * e = x)
: e = 1 :=
by
have h1 : e = e * e := (h e).symm
exact self_eq_mul_left.mp h1
-- 3ª demostración
-- ===============
example
(e : G)
(h : ∀ x, x * e = x)
: e = 1 :=
self_eq_mul_left.mp (h e).symm
-- 4ª demostración
-- ===============
example
(e : G)
(h : ∀ x, x * e = x)
: e = 1 :=
by aesop
-- Lemas usados
-- ============
-- variable (a b : G)
-- #check (one_mul a : 1 * a = a)
-- #check (self_eq_mul_left : b = a * b ↔ a = 1)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
theory Unicidad_del_elemento_neutro_en_los_grupos
imports Main
begin
context group
begin
(* 1ª demostración *)
lemma
assumes "∀ x. x * e = x"
shows "e = 1"
proof -
have "e = 1 * e" by (simp only: left_neutral)
also have "… = 1" using assms by (rule allE)
finally show "e = 1" by this
qed
(* 2ª demostración *)
lemma
assumes "∀ x. x * e = x"
shows "e = 1"
proof -
have "e = 1 * e" by simp
also have "… = 1" using assms by simp
finally show "e = 1" .
qed
(* 3ª demostración *)
lemma
assumes "∀ x. x * e = x"
shows "e = 1"
using assms
by (metis left_neutral)
end
end