title | date | category | has_math |
---|---|---|---|
La inversa de una función es biyectiva |
2024-06-19 06:00:00 UTC+02:00 |
Funciones |
true |
[mathjax]
En Lean4 se puede definir que \(g\) es una inversa de \(f\) por
def inversa (f : X → Y) (g : Y → X) :=
(∀ x, (g ∘ f) x = x) ∧ (∀ y, (f ∘ g) y = y)
Demostrar que si \(g\) es una inversa de \(f\), entonces \(g\) es biyectiva.
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Tactic
open Function
variable {X Y : Type _}
variable (f : X → Y)
variable (g : Y → X)
def inversa (f : X → Y) (g : Y → X) :=
(∀ x, (g ∘ f) x = x) ∧ (∀ y, (f ∘ g) y = y)
example
(hg : inversa g f)
: Bijective g :=
by sorry
Para demostrar que \(g: Y → X\) es biyectiva, basta probar que existe una \(h\) que es inversa de \(g\) por la izquierda y por la derecha; es decir, \begin{align} &(∀y ∈ Y)[(h ∘ g)(y) = y] \tag{1} \\ &(∀x ∈ X)[(g ∘ h)(x) = x] \tag{2} \end{align}
Puesto que \(g\) es una inversa de \(f\), entonces \begin{align} &(∀x ∈ X)[(g ∘ f)(x) = x] \tag{3} \\ &(∀y ∈ Y)[(f ∘ g)(y) = y] \tag{4} \end{align}
Tomando \(f\) como \(h\), (1) se verifica por (4) y (2) se verifica por (3).
import Mathlib.Tactic
open Function
variable {X Y : Type _}
variable (f : X → Y)
variable (g : Y → X)
def inversa (f : X → Y) (g : Y → X) :=
(∀ x, (g ∘ f) x = x) ∧ (∀ y, (f ∘ g) y = y)
-- 1ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
rcases hg with ⟨h1, h2⟩
-- h1 : ∀ (x : Y), (f ∘ g) x = x
-- h2 : ∀ (y : X), (g ∘ f) y = y
rw [bijective_iff_has_inverse]
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
use f
-- ⊢ LeftInverse f g ∧ Function.RightInverse f g
constructor
. -- ⊢ LeftInverse f g
exact h1
. -- ⊢ Function.RightInverse f g
exact h2
-- 2ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
rcases hg with ⟨h1, h2⟩
-- h1 : ∀ (x : Y), (f ∘ g) x = x
-- h2 : ∀ (y : X), (g ∘ f) y = y
rw [bijective_iff_has_inverse]
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
use f
-- ⊢ LeftInverse f g ∧ Function.RightInverse f g
exact ⟨h1, h2⟩
-- 3ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
rcases hg with ⟨h1, h2⟩
-- h1 : ∀ (x : Y), (f ∘ g) x = x
-- h2 : ∀ (y : X), (g ∘ f) y = y
rw [bijective_iff_has_inverse]
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
exact ⟨f, ⟨h1, h2⟩⟩
-- 4ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
rw [bijective_iff_has_inverse]
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
use f
-- ⊢ LeftInverse f g ∧ Function.RightInverse f g
exact hg
-- 5ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
rw [bijective_iff_has_inverse]
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
exact ⟨f, hg⟩
-- 6ª demostración
-- ===============
example
(hg : inversa g f)
: Bijective g :=
by
apply bijective_iff_has_inverse.mpr
-- ⊢ ∃ g_1, LeftInverse g_1 g ∧ Function.RightInverse g_1 g
exact ⟨f, hg⟩
-- Lemas usados
-- ============
-- #check (bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
theory La_inversa_de_una_funcion_biyectiva_es_biyectiva
imports Main
begin
definition inversa :: "('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ bool" where
"inversa f g ⟷ (∀ x. (g ∘ f) x = x) ∧ (∀ y. (f ∘ g) y = y)"
(* 1ª demostración *)
lemma
fixes f :: "'a ⇒ 'b"
assumes "inversa g f"
shows "bij g"
proof (rule bijI)
show "inj g"
proof (rule injI)
fix x y
assume "g x = g y"
have h1 : "∀ y. (f ∘ g) y = y"
by (meson assms inversa_def)
then have "x = (f ∘ g) x"
by (simp only: allE)
also have "… = f (g x)"
by (simp only: o_apply)
also have "… = f (g y)"
by (simp only: ‹g x = g y›)
also have "… = (f ∘ g) y"
by (simp only: o_apply)
also have "… = y"
using h1 by (simp only: allE)
finally show "x = y"
by this
qed
next
show "surj g"
proof (rule surjI)
fix x
have h2 : "∀ x. (g ∘ f) x = x"
by (meson assms inversa_def)
then have "(g ∘ f) x = x"
by (simp only: allE)
then show "g (f x) = x"
by (simp only: o_apply)
qed
qed
(* 2ª demostración *)
lemma
fixes f :: "'a ⇒ 'b"
assumes "inversa g f"
shows "bij g"
proof (rule bijI)
show "inj g"
proof (rule injI)
fix x y
assume "g x = g y"
have h1 : "∀ y. (f ∘ g) y = y"
by (meson assms inversa_def)
then show "x = y"
by (metis ‹g x = g y› o_apply)
qed
next
show "surj g"
proof (rule surjI)
fix x
have h2 : "∀ x. (g ∘ f) x = x"
by (meson assms inversa_def)
then show "g (f x) = x"
by (simp only: o_apply)
qed
qed
end