Skip to content

Latest commit

 

History

History
81 lines (63 loc) · 2.03 KB

Doble_me_suma_cuadrados.md

File metadata and controls

81 lines (63 loc) · 2.03 KB
Título Autor
En ℝ, 2ab ≤ a² + b²
José A. Alonso

Sean (a) y (b) números reales. Demostrar con Lean4 que [2ab ≤ a^2 + b^2]

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Data.Real.Basic

variable (a b : ℝ)

example : 2*a*b ≤ a^2 + b^2 :=
by sorry

Demostración en lenguaje natural

[mathjax] Puesto que los cuadrados son positivos, se tiene [(a - b)^2 ≥ 0] Desarrollando el cuadrado, se obtiene [a^2 - 2ab + b^2 ≥ 0] Sumando 2ab a ambos lados, queda [a^2 + b^2 ≥ 2ab]

Demostraciones con Lean4

import Mathlib.Data.Real.Basic

variable (a b : ℝ)

-- 1ª demostración
example : 2*a*b ≤ a^2 + b^2 :=
by
  have h1 : 0 ≤ (a - b)^2         := sq_nonneg (a - b)
  have h2 : 0 ≤ a^2 - 2*a*b + b^2 := by linarith only [h1]
  show 2*a*b ≤ a^2 + b^2
  linarith

-- 2ª demostración
example : 2*a*b ≤ a^2 + b^2 :=
by
  have h : 0 ≤ a^2 - 2*a*b + b^2
  { calc a^2 - 2*a*b + b^2
         = (a - b)^2                 := (sub_sq a b).symm
       _ ≥ 0                         := sq_nonneg (a - b) }
  calc 2*a*b
       = 2*a*b + 0                   := (add_zero (2*a*b)).symm
     _ ≤ 2*a*b + (a^2 - 2*a*b + b^2) := add_le_add (le_refl _) h
     _ = a^2 + b^2                   := by ring

-- 3ª demostración
example : 2*a*b ≤ a^2 + b^2 :=
by
  have h : 0 ≤ a^2 - 2*a*b + b^2
  { calc a^2 - 2*a*b + b^2
         = (a - b)^2       := (sub_sq a b).symm
       _ ≥ 0               := sq_nonneg (a - b) }
  linarith only [h]

-- 4ª demostración
example : 2*a*b ≤ a^2 + b^2 :=
-- by apply?
two_mul_le_add_sq a b

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias