Título | Autor |
---|---|
En ℝ, si x² = 1 entonces x = 1 ó x = -1. |
José A. Alonso |
[mathjax]
Demostrar con Lean4 que en (ℝ), si (x² = 1) entonces (x = 1) ó (x = -1).
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
variable (x y : ℝ)
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by sorry
Usaremos los siguientes lemas \begin{align} &(∀ x ∈ ℝ)[x - x = 0] \tag{L1} \ &(∀ x, y ∈ ℝ)[xy = 0 → x = 0 ∨ y = 0] \tag{L2} \ &(∀ x, y ∈ ℝ)[x - y = 0 ↔ x = y] \tag{L3} \ &(∀ x, y ∈ ℝ)[x + y = 0 → x = -y] \tag{L4} \end{align}
Se tiene que \begin{align} (x - 1)(x + 1) &= x² - 1 \ &= 1 - 1 &&\text{[por la hipótesis]} \ &= 0 &&\text{[por L1]} \end{align} y, por el lema L2, se tiene que [ x - 1 = 0 ∨ x + 1 = 0 ] Acabaremos la demostración por casos.
Primer caso: \begin{align} x - 1 = 0 &⟹ x = 1 &&\text{[por L3]} \ &⟹ x = 1 ∨ x = -1 \end{align}
Segundo caso: \begin{align} x + 1 = 0 &⟹ x = -1 &&\text{[por L4]} \ &⟹ x = 1 ∨ x = -1 \end{align}
import Mathlib.Data.Real.Basic
variable (x y : ℝ)
-- 1ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by
have h1 : (x - 1) * (x + 1) = 0 := by
calc (x - 1) * (x + 1) = x^2 - 1 := by ring
_ = 1 - 1 := by rw [h]
_ = 0 := sub_self 1
have h2 : x - 1 = 0 ∨ x + 1 = 0 := by
apply eq_zero_or_eq_zero_of_mul_eq_zero h1
rcases h2 with h3 | h4
. -- h3 : x - 1 = 0
left
-- ⊢ x = 1
exact sub_eq_zero.mp h3
. -- h4 : x + 1 = 0
right
-- ⊢ x = -1
exact eq_neg_of_add_eq_zero_left h4
-- 2ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by
have h1 : (x - 1) * (x + 1) = 0 := by nlinarith
have h2 : x - 1 = 0 ∨ x + 1 = 0 := by aesop
rcases h2 with h3 | h4
. -- h3 : x - 1 = 0
left
-- ⊢ x = 1
linarith
. -- h4 : x + 1 = 0
right
-- ⊢ x = -1
linarith
-- 3ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
sq_eq_one_iff.mp h
-- 3ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by aesop
-- Lemas usados
-- ============
-- #check (eq_neg_of_add_eq_zero_left : x + y = 0 → x = -y)
-- #check (eq_zero_or_eq_zero_of_mul_eq_zero : x * y = 0 → x = 0 ∨ y = 0)
-- #check (sq_eq_one_iff : x ^ 2 = 1 ↔ x = 1 ∨ x = -1)
-- #check (sub_eq_zero : x - y = 0 ↔ x = y)
-- #check (sub_self x : x - x = 0)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
- J. Avigad y P. Massot. Mathematics in Lean, p. 39.
theory Cuadrado_igual_a_uno
imports Main HOL.Real
begin
(* 1ª demostración *)
lemma
fixes x :: real
assumes "x^2 = 1"
shows "x = 1 ∨ x = -1"
proof -
have "(x - 1) * (x + 1) = x^2 - 1"
by algebra
also have "... = 0"
using assms by simp
finally have "(x - 1) * (x + 1) = 0" .
moreover
{ assume "(x - 1) = 0"
then have "x = 1"
by simp }
moreover
{ assume "(x + 1) = 0"
then have "x = -1"
by simp }
ultimately show "x = 1 ∨ x = -1"
by auto
qed
(* 2ª demostración *)
lemma
fixes x :: real
assumes "x^2 = 1"
shows "x = 1 ∨ x = -1"
proof -
have "(x - 1) * (x + 1) = x^2 - 1"
by algebra
also have "... = 0"
using assms by simp
finally have "(x - 1) * (x + 1) = 0" .
then show "x = 1 ∨ x = -1"
by auto
qed
(* 3ª demostración *)
lemma
fixes x :: real
assumes "x^2 = 1"
shows "x = 1 ∨ x = -1"
proof -
have "(x - 1) * (x + 1) = 0"
proof -
have "(x - 1) * (x + 1) = x^2 - 1" by algebra
also have "… = 0" by (simp add: assms)
finally show ?thesis .
qed
then show "x = 1 ∨ x = -1"
by auto
qed
(* 4ª demostración *)
lemma
fixes x :: real
assumes "x^2 = 1"
shows "x = 1 ∨ x = -1"
using assms power2_eq_1_iff by blast
end