Título | Autor |
---|---|
En ℝ, min(min(a,b),c) = min(a,min(b,c)) |
José A. Alonso |
Demostrar con Lean4 que (a), (b) y (c) números reales, entonces (\min(\min(a, b), c) = \min(a, \min(b, c))).
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
variable {a b c : ℝ}
example :
min (min a b) c = min a (min b c) :=
by sorry
Demostración en lenguaje natural
[mathjax] Por la propiedad antisimétrica, la igualdad es consecuencia de las siguientes desigualdades \begin{align} \min(\min(a, b), c) &\leq \min(a, \min(b, c)) \tag{1} \ \min(a, \min(b, c)) &\leq \min(\min(a, b), c) \tag{2} \end{align}
La (1) es consecuencia de las siguientes desigualdades \begin{align} \min(\min(a, b), c) &\leq a \tag{1a} \ \min(\min(a, b), c) &\leq b \tag{1b} \ \min(\min(a, b), c) &\leq c \tag{1c} \end{align} En efecto, de (1b) y (1c) se obtiene [ \min(\min(a, b), c) \leq \min(b,c) ] que, junto con (1a) da (1).
La (2) es consecuencia de las siguientes desigualdades \begin{align} \min(a, \min(b, c)) &\leq a \tag{2a} \ \min(a, \min(b, c)) &\leq b \tag{2b} \ \min(a, \min(b, c)) &\leq c \tag{2c} \end{align} En efecto, de (2a) y (2b) se obtiene [ \min(a, \min(b, c)) \leq \min(a, b) ] que, junto con (2c) da (2).
La demostración de (1a) es [ \min(\min(a, b), c) \leq \min(a, b) \leq a ] La demostración de (1b) es [ \min(\min(a, b), c) \leq \min(a, b) \leq b ] La demostración de (2b) es [ \min(a, \min(b, c)) \leq \min(b, c) \leq b ] La demostración de (2c) es [ \min(a, \min(b, c)) \leq \min(b, c) \leq c ] La (1c) y (2a) son inmediatas.
Demostraciones con Lean4
import Mathlib.Data.Real.Basic
variable {a b c : ℝ}
-- Lemas auxiliares
-- ================
lemma aux1a : min (min a b) c ≤ a :=
calc min (min a b) c
≤ min a b := by exact min_le_left (min a b) c
_ ≤ a := min_le_left a b
lemma aux1b : min (min a b) c ≤ b :=
calc min (min a b) c
≤ min a b := by exact min_le_left (min a b) c
_ ≤ b := min_le_right a b
lemma aux1c : min (min a b) c ≤ c :=
by exact min_le_right (min a b) c
-- 1ª demostración del lema aux1
lemma aux1 : min (min a b) c ≤ min a (min b c) :=
by
apply le_min
{ show min (min a b) c ≤ a
exact aux1a }
{ show min (min a b) c ≤ min b c
apply le_min
{ show min (min a b) c ≤ b
exact aux1b }
{ show min (min a b) c ≤ c
exact aux1c }}
-- 2ª demostración del lema aux1
lemma aux1' : min (min a b) c ≤ min a (min b c) :=
le_min aux1a (le_min aux1b aux1c)
lemma aux2a : min a (min b c) ≤ a :=
by exact min_le_left a (min b c)
lemma aux2b : min a (min b c) ≤ b :=
calc min a (min b c)
≤ min b c := by exact min_le_right a (min b c)
_ ≤ b := min_le_left b c
lemma aux2c : min a (min b c) ≤ c :=
calc min a (min b c)
≤ min b c := by exact min_le_right a (min b c)
_ ≤ c := min_le_right b c
-- 1ª demostración del lema aux2
lemma aux2 : min a (min b c) ≤ min (min a b) c :=
by
apply le_min
{ show min a (min b c) ≤ min a b
apply le_min
{ show min a (min b c) ≤ a
exact aux2a }
{ show min a (min b c) ≤ b
exact aux2b }}
{ show min a (min b c) ≤ c
exact aux2c }
-- 2ª demostración del lema aux2
lemma aux2' : min a (min b c) ≤ min (min a b) c :=
le_min (le_min aux2a aux2b) aux2c
-- 1ª demostración
-- ===============
example :
min (min a b) c = min a (min b c) :=
by
apply le_antisymm
{ show min (min a b) c ≤ min a (min b c)
exact aux1 }
{ show min a (min b c) ≤ min (min a b) c
exact aux2 }
-- 2ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
by
apply le_antisymm
{ exact aux1 }
{ exact aux2 }
-- 3ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
le_antisymm aux1 aux2
-- 4ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
min_assoc a b c
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias
- J. Avigad y P. Massot. Mathematics in Lean, p. 18.