title | date | category | has_math |
---|---|---|---|
Las sucesiones convergentes están acotadas |
2024-05-28 06:00:00 UTC+02:00 |
Límites |
true |
[mathjax]
Demostrar con Lean4 que si \(u_n\) es una sucesión convergente, entonces está acotada; es decir, \[ (∃ k ∈ ℕ)(∃ b ∈ ℝ)(∀ n ∈ ℕ)[n ≥ k → |u_n| ≤ b] \]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {u : ℕ → ℝ}
-- (limite u c) expresa que el límite de u es c.
def limite (u : ℕ → ℝ) (c : ℝ) :=
∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - c| ≤ ε
-- (convergente u) expresa que u es convergente.
def convergente (u : ℕ → ℝ) :=
∃ a, limite u a
example
(h : convergente u)
: ∃ k b, ∀ n, n ≥ k → |u n| ≤ b :=
by sorry
Puesto que la sucesión \(u_n\) es convergente, existe un \(a ∈ ℝ\) tal que \[ \lim(u_n) = a \] Luego, existe un \(k ∈ ℕ\) tal que \[ (∀ n ∈ ℕ)[n ≥ k → |u_n - a | < 1] \tag{1} \] Veamos que \[ (∀ n ∈ ℕ)[n ≥ k → |u_n| ≤ 1 + |a]] \] Para ello, sea \(n ∈ ℕ\) tal que \[ n ≥ k \tag{2} \] Entonces, \begin{align} |u_n| &= |u_n - a + a| \\ &≤ |u_n - a| + |a| \\ &≤ 1 + |a| &&\text{[por (1) y (2)]} \end{align}
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {u : ℕ → ℝ}
-- (limite u c) expresa que el límite de u es c.
def limite (u : ℕ → ℝ) (c : ℝ) :=
∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - c| ≤ ε
-- (convergente u) expresa que u es convergente.
def convergente (u : ℕ → ℝ) :=
∃ a, limite u a
-- 1ª demostración
-- ===============
example
(h : convergente u)
: ∃ k b, ∀ n, n ≥ k → |u n| ≤ b :=
by
cases' h with a ua
-- a : ℝ
-- ua : limite u a
cases' ua 1 zero_lt_one with k h
-- k : ℕ
-- h : ∀ (n : ℕ), n ≥ k → |u n - a| ≤ 1
use k, 1 + |a|
-- ⊢ ∀ (n : ℕ), n ≥ k → |u n| ≤ 1 + |a|
intros n hn
-- n : ℕ
-- hn : n ≥ k
-- ⊢ |u n| ≤ 1 + |a|
specialize h n hn
-- ⊢ |u n| ≤ 1 + |a|
calc |u n|
= |u n - a + a| := congr_arg abs (eq_add_of_sub_eq rfl)
_ ≤ |u n - a| + |a| := abs_add (u n - a) a
_ ≤ 1 + |a| := add_le_add_right h |a|
-- 2ª demostración
-- ===============
example
(h : convergente u)
: ∃ k b, ∀ n, n ≥ k → |u n| ≤ b :=
by
cases' h with a ua
-- a : ℝ
-- ua : limite u a
cases' ua 1 zero_lt_one with k h
-- k : ℕ
-- h : ∀ (n : ℕ), n ≥ k → |u n - a| ≤ 1
use k, 1 + |a|
-- ⊢ ∀ (n : ℕ), n ≥ k → |u n| ≤ 1 + |a|
intros n hn
-- n : ℕ
-- hn : n ≥ k
-- ⊢ |u n| ≤ 1 + |a|
specialize h n hn
-- h : |u n - a| ≤ 1
calc |u n|
= |u n - a + a| := by ring_nf
_ ≤ |u n - a| + |a| := abs_add (u n - a) a
_ ≤ 1 + |a| := by linarith
-- Lemas usados
-- ============
-- variable (a b c : ℝ)
-- #check (abs_add a b : |a + b| ≤ |a| + |b|)
-- #check (add_le_add_right : b ≤ c → ∀ a, b + a ≤ c + a)
-- #check (eq_add_of_sub_eq : a - c = b → a = b + c)
-- #check (zero_lt_one : 0 < 1)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
theory Acotacion_de_convergentes
imports Main HOL.Real
begin
(* (limite u c) expresa que el límite de u es c. *)
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool" where
"limite u c ⟷ (∀ε>0. ∃k. ∀n≥k. ¦u n - c¦ ≤ ε)"
(* (convergente u) expresa que u es convergente. *)
definition convergente :: "(nat ⇒ real) ⇒ bool" where
"convergente u ⟷ (∃ a. limite u a)"
(* 1ª demostración *)
lemma
assumes "convergente u"
shows "∃ k b. ∀n≥k. ¦u n¦ ≤ b"
proof -
obtain a where "limite u a"
using assms convergente_def by blast
then obtain k where hk : "∀n≥k. ¦u n - a¦ ≤ 1"
using limite_def zero_less_one by blast
have "∀n≥k. ¦u n¦ ≤ 1 + ¦a¦"
proof (intro allI impI)
fix n
assume hn : "n ≥ k"
have "¦u n¦ = ¦u n - a + a¦" by simp
also have "… ≤ ¦u n - a¦ + ¦a¦" by simp
also have "… ≤ 1 + ¦a¦" by (simp add: hk hn)
finally show "¦u n¦ ≤ 1 + ¦a¦" .
qed
then show "∃ k b. ∀n≥k. ¦u n¦ ≤ b"
by (intro exI)
qed
end