-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProducto_por_inverso.lean
80 lines (68 loc) · 3.06 KB
/
Producto_por_inverso.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
-- Producto_por_inverso.lean
-- Si G es un grupo y a ∈ G, entonces aa⁻¹ = 1
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 17-agosto-2023
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- En Lean4, se declara que G es un grupo mediante la expresión
-- variable {G : Type _} [Group G]
--
-- Como consecuencia, se tiene los siguientes axiomas
-- mul_assoc : ∀ a b c : G, a * b * c = a * (b * c)
-- one_mul : ∀ a : G, 1 * a = a
-- inv_mul_cancel : ∀ a : G, a⁻¹ * a = 1
--
-- Demostrar que si G es un grupo y a ∈ G, entonces
-- a * a⁻¹ = 1
-- ----------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Por la siguiente cadena de igualdades
-- a·a⁻¹ = 1·(a·a⁻¹) [por producto con uno]
-- = (1·a)·a⁻¹ [por asociativa]
-- = (((a⁻¹)⁻¹·a⁻¹) ·a)·a⁻¹ [por producto con inverso]
-- = ((a⁻¹)⁻¹·(a⁻¹ ·a))·a⁻¹ [por asociativa]
-- = ((a⁻¹)⁻¹·1)·a⁻¹ [por producto con inverso]
-- = (a⁻¹)⁻¹·(1·a⁻¹) [por asociativa]
-- = (a⁻¹)⁻¹·a⁻¹ [por producto con uno]
-- = 1 [por producto con inverso]
-- Demostraciones con Lean4
-- ========================
import Mathlib.Algebra.Group.Defs
variable {G : Type _} [Group G]
variable (a b : G)
-- 1ª demostración
example : a * a⁻¹ = 1 :=
calc
a * a⁻¹ = 1 * (a * a⁻¹) := by rw [one_mul]
_ = (1 * a) * a⁻¹ := by rw [mul_assoc]
_ = (((a⁻¹)⁻¹ * a⁻¹) * a) * a⁻¹ := by rw [inv_mul_cancel]
_ = ((a⁻¹)⁻¹ * (a⁻¹ * a)) * a⁻¹ := by rw [← mul_assoc]
_ = ((a⁻¹)⁻¹ * 1) * a⁻¹ := by rw [inv_mul_cancel]
_ = (a⁻¹)⁻¹ * (1 * a⁻¹) := by rw [mul_assoc]
_ = (a⁻¹)⁻¹ * a⁻¹ := by rw [one_mul]
_ = 1 := by rw [inv_mul_cancel]
-- 2ª demostración
example : a * a⁻¹ = 1 :=
calc
a * a⁻¹ = 1 * (a * a⁻¹) := by simp
_ = (1 * a) * a⁻¹ := by simp
_ = (((a⁻¹)⁻¹ * a⁻¹) * a) * a⁻¹ := by simp
_ = ((a⁻¹)⁻¹ * (a⁻¹ * a)) * a⁻¹ := by simp
_ = ((a⁻¹)⁻¹ * 1) * a⁻¹ := by simp
_ = (a⁻¹)⁻¹ * (1 * a⁻¹) := by simp
_ = (a⁻¹)⁻¹ * a⁻¹ := by simp
_ = 1 := by simp
-- 3ª demostración
example : a * a⁻¹ = 1 :=
by simp
-- 4ª demostración
example : a * a⁻¹ = 1 :=
by exact mul_inv_cancel a
-- Lemas usados
-- ============
-- variable (c : G)
-- #check (inv_mul_cancel a : a⁻¹ * a = 1)
-- #check (mul_assoc a b c : (a * b) * c = a * (b * c))
-- #check (mul_inv_cancel a : a * a⁻¹ = 1)
-- #check (one_mul a : 1 * a = a)