-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLimite_de_sucesion_menor_que_otra_sucesion.lean
217 lines (200 loc) · 7.46 KB
/
Limite_de_sucesion_menor_que_otra_sucesion.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
-- Limite_de_sucesion_menor_que_otra_sucesion.lean
-- Si (∀n)[uₙ ≤ vₙ], entonces lim uₙ ≤ lim vₙ
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 31-mayo-2024
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- En Lean, una sucesión u₀, u₁, u₂, ... se puede representar mediante
-- una función (u : ℕ → ℝ) de forma que u(n) es uₙ.
--
-- Se define que a límite de la sucesión u, por
-- def limite (u : ℕ → ℝ) (c : ℝ) :=
-- ∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - c| < ε
--
-- Demostrar que si (∀ n)[uₙ ≤ vₙ], a es límite de uₙ y c es límite de vₙ,
-- entonces a ≤ c.
-- ---------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Por reduccion al absurdo. Supongamos que a ≰ c. Entonces,
-- c < a (1)
-- Sea
-- ε = (a - c)/2 (2)
-- Por (1),
-- ε > 0.
-- Por tanto, puesto que a es límite de uₙ, existe un p ∈ ℕ tal que
-- (∀ n)[n ≥ p → |uₙ - a| < ε] (3)
-- Análogamente, puesto que c es límite de vₙ, existe un q ∈ ℕ tal
-- que
-- (∀ n)[n ≥ q → |vₙ - c| < ε] (4)
-- Sea
-- k = max(p, q)
-- Entonces, k ≥ p y, por (3),
-- |uₖ - a| < ε (5)
-- Análogamente, k ≥ q y, por (4),
-- |vₖ - c| < ε (6)
-- Además, por la hipótesis,
-- uₖ ≤ vₖ (7)
-- Por tanto,
-- a - c = (a - uₖ) + (uₖ - c)
-- ≤ (a - uₖ) + (vₖ - c) [por (7)]
-- ≤ |(a - uₖ) + (vₖ - c)|
-- ≤ |a - uₖ| + |vₖ - c|
-- = |uₖ - a| + |vₖ - c|
-- < ε + ε [por (5) y (6)]
-- = a - c [por (2)]
-- Luego,
-- a - c < a - c
-- que es una contradicción.
-- Demostraciones con Lean4
-- ========================
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (u v : ℕ → ℝ)
variable (a c : ℝ)
def limite (u : ℕ → ℝ) (c : ℝ) :=
∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - c| < ε
-- 1ª demostración
-- ===============
example
(hu : limite u a)
(hv : limite v c)
(huv : ∀ n, u n ≤ v n)
: a ≤ c :=
by
by_contra h
-- h : ¬a ≤ c
-- ⊢ False
have hca : c < a := not_le.mp h
set ε := (a - c) /2
have hε : 0 < ε := half_pos (sub_pos.mpr hca)
obtain ⟨ku, hku : ∀ n, n ≥ ku → |u n - a| < ε⟩ := hu ε hε
obtain ⟨kv, hkv : ∀ n, n ≥ kv → |v n - c| < ε⟩ := hv ε hε
let k := max ku kv
have hku' : ku ≤ k := le_max_left ku kv
have hkv' : kv ≤ k := le_max_right ku kv
have ha : |u k - a| < ε := hku k hku'
have hc : |v k - c| < ε := hkv k hkv'
have hk : u k - c ≤ v k - c := sub_le_sub_right (huv k) c
have hac1 : a - c < a - c := by
calc a - c
= (a - u k) + (u k - c) := by ring
_ ≤ (a - u k) + (v k - c) := add_le_add_left hk (a - u k)
_ ≤ |(a - u k) + (v k - c)| := le_abs_self ((a - u k) + (v k - c))
_ ≤ |a - u k| + |v k - c| := abs_add (a - u k) (v k - c)
_ = |u k - a| + |v k - c| := by simp only [abs_sub_comm]
_ < ε + ε := add_lt_add ha hc
_ = a - c := add_halves (a - c)
have hac2 : ¬ a - c < a -c := lt_irrefl (a - c)
show False
exact hac2 hac1
-- 2ª demostración
-- ===============
example
(hu : limite u a)
(hv : limite v c)
(huv : ∀ n, u n ≤ v n)
: a ≤ c :=
by
by_contra h
-- h : ¬a ≤ c
-- ⊢ False
have _hca : c < a := not_le.mp h
set ε := (a - c) /2 with hε
obtain ⟨ku, hku : ∀ n, n ≥ ku → |u n - a| < ε⟩ := hu ε (by linarith)
obtain ⟨kv, hkv : ∀ n, n ≥ kv → |v n - c| < ε⟩ := hv ε (by linarith)
let k := max ku kv
have ha : |u k - a| < ε := hku k (le_max_left ku kv)
have hc : |v k - c| < ε := hkv k (le_max_right ku kv)
have hk : u k - c ≤ v k - c := sub_le_sub_right (huv k) c
have hac1 : a - c < a -c := by
calc a - c
= (a - u k) + (u k - c) := by ring
_ ≤ (a - u k) + (v k - c) := add_le_add_left hk (a - u k)
_ ≤ |(a - u k) + (v k - c)| := le_abs_self ((a - u k) + (v k - c))
_ ≤ |a - u k| + |v k - c| := abs_add (a - u k) (v k - c)
_ = |u k - a| + |v k - c| := by simp only [abs_sub_comm]
_ < ε + ε := add_lt_add ha hc
_ = a - c := add_halves (a - c)
have hac2 : ¬ a - c < a -c := lt_irrefl (a - c)
show False
exact hac2 hac1
-- 3ª demostración
-- ===============
example
(hu : limite u a)
(hv : limite v c)
(huv : ∀ n, u n ≤ v n)
: a ≤ c :=
by
by_contra h
-- h : ¬a ≤ c
-- ⊢ False
have _hca : c < a := not_le.mp h
set ε := (a - c) /2 with hε
obtain ⟨ku, hku : ∀ n, n ≥ ku → |u n - a| < ε⟩ := hu ε (by linarith)
obtain ⟨kv, hkv : ∀ n, n ≥ kv → |v n - c| < ε⟩ := hv ε (by linarith)
let k := max ku kv
have ha : |u k - a| < ε := hku k (le_max_left ku kv)
have hc : |v k - c| < ε := hkv k (le_max_right ku kv)
have hk : u k - c ≤ v k - c := sub_le_sub_right (huv k) c
have hac1 : a - c < a -c := by
calc a - c
= (a - u k) + (u k - c) := by ring
_ ≤ (a - u k) + (v k - c) := add_le_add_left hk (a - u k)
_ ≤ |(a - u k) + (v k - c)| := by simp [le_abs_self]
_ ≤ |a - u k| + |v k - c| := by simp [abs_add]
_ = |u k - a| + |v k - c| := by simp [abs_sub_comm]
_ < ε + ε := add_lt_add ha hc
_ = a - c := by simp [hε]
have hac2 : ¬ a - c < a -c := lt_irrefl (a - c)
show False
exact hac2 hac1
-- 4ª demostración
-- ===============
example
(hu : limite u a)
(hv : limite v c)
(huv : ∀ n, u n ≤ v n)
: a ≤ c :=
by
apply le_of_not_lt
-- ⊢ ¬c < a
intro hca
-- hca : c < a
-- ⊢ False
set ε := (a - c) /2 with hε
cases' hu ε (by linarith) with ku hku
-- ku : ℕ
-- hku : ∀ (n : ℕ), n ≥ ku → |u n - a| < ε
cases' hv ε (by linarith) with kv hkv
-- kv : ℕ
-- hkv : ∀ (n : ℕ), n ≥ kv → |v n - c| < ε
let k := max ku kv
have ha : |u k - a| < ε := hku k (le_max_left ku kv)
have hc : |v k - c| < ε := hkv k (le_max_right ku kv)
have hk : u k ≤ v k := huv k
apply lt_irrefl (a - c)
-- ⊢ a - c < a - c
rw [abs_lt] at ha hc
-- ha : -ε < u k - a ∧ u k - a < ε
-- hc : -ε < v k - c ∧ v k - c < ε
linarith
-- Lemas usados
-- ============
-- variable (b d : ℝ)
-- #check (abs_add a b : |a + b| ≤ |a| + |b|)
-- #check (abs_lt: |a| < b ↔ -b < a ∧ a < b)
-- #check (abs_sub_comm a b : |a - b| = |b - a|)
-- #check (add_halves a : a / 2 + a / 2 = a)
-- #check (add_le_add_left : b ≤ c → ∀ a, a + b ≤ a + c)
-- #check (add_lt_add : a < b → c < d → a + c < b + d)
-- #check (half_pos : 0 < a → 0 < a / 2)
-- #check (le_abs_self a : a ≤ |a|)
-- #check (le_max_left a b : a ≤ max a b)
-- #check (le_max_right a b : b ≤ max a b)
-- #check (le_of_not_lt : ¬b < a → a ≤ b)
-- #check (lt_irrefl a : ¬a < a)
-- #check (not_le : ¬a ≤ b ↔ b < a)
-- #check (sub_le_sub_right : a ≤ b → ∀ c, a - c ≤ b - c)
-- #check (sub_pos : 0 < a - b ↔ b < a)