-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path(cb)a_eq_b(ac).lean
56 lines (46 loc) · 1.41 KB
/
(cb)a_eq_b(ac).lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
-- (cb)a_eq_b(ac).lean
-- ∀ a b c ∈ ℝ, (cb)a = b(ac)
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 12-julio-2023
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que los números reales tienen la siguiente propiedad
-- (c * b) * a = b * (a * c)
-- ---------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Por la siguiente cadena de igualdades:
-- (c * b) * a
-- = (b * c) * a [por la conmutativa]
-- = b * (c * a) [por la asociativa]
-- = b * (a * c) [por la conmutativa]
-- Demostraciones con Lean4
-- ========================
import Mathlib.Tactic
import Mathlib.Data.Real.Basic
-- 1ª demostración
example
(a b c : ℝ)
: (c * b) * a = b * (a * c) :=
calc
(c * b) * a
= (b * c) * a := by rw [mul_comm c b]
_ = b * (c * a) := by rw [mul_assoc]
_ = b * (a * c) := by rw [mul_comm c a]
-- 2ª demostración
example
(a b c : ℝ)
: (c * b) * a = b * (a * c) :=
by
rw [mul_comm c b]
rw [mul_assoc]
rw [mul_comm c a]
-- 3ª demostración
example
(a b c : ℝ)
: (c * b) * a = b * (a * c) :=
by ring
-- Lemas usados
-- ============
-- #check (mul_comm : ∀ (a b : ℝ), a * b = b * a)
-- #check (mul_assoc : ∀ (a b c : ℝ), (a * b) * c = a * (b * c))