-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtransfer_classification.py
320 lines (239 loc) · 11.9 KB
/
transfer_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.jit
import os
import logging
from torchmetrics import Accuracy
from tqdm import tqdm
import pandas as pd
import wandb
import copy
from lib.pruners import Rand, SNIP, GraSP, SynFlow, SynFlowL2, NTKSAP, Mag, PX
from lib.generator import masked_parameters, parameters, prunable
from lib.models.imagenet_resnet import resnet50
from lib.models.heads import get_ridge_classification_head
import lib.metrics as metrics
import lib.layers as layers
import datasets.ImageNetK.dataset as ImageNet10
from globals import CONFIG
def kaiming_normal_init(model):
for m in model.modules():
if isinstance(m, (layers.Conv2d, layers.Linear)):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, (layers.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
class Experiment:
def __init__(self):
assert CONFIG.dataset in ['ImageNet10'], f'"{CONFIG.dataset}" dataset not available!'
assert CONFIG.pruner in ['Dense', 'Rand', 'SNIP', 'GraSP', 'SynFlow', 'SynFlowL2',
'NTKSAP', 'Mag', 'PX', 'IMP'], f'"{CONFIG.pruner}" pruning strategy not available!'
assert CONFIG.arch in ['resnet50'], f'"{CONFIG.arch}" architecture not available!'
assert CONFIG.experiment_args['pretrain'] in ['imagenet', 'mocov2', 'dino'], f'"{CONFIG.experiment_args["pretrain"]}" pretrain not available!'
# Load data
self.data = eval(CONFIG.dataset).load_data(CONFIG.dataset_args['split_nr'])
# Initialize model
self.model = eval(CONFIG.arch)(num_classes=CONFIG.num_classes)
self.model = self.model.to(CONFIG.device)
# Fit ridge classifier
self.model.fc = nn.Identity()
self.model.fc = get_ridge_classification_head(self.model,
self.data['test'],
CONFIG.num_classes,
CONFIG.device)
self.model.fc.requires_grad_(False)
# Optimizers, schedulers & losses
self._init_optimizers()
# Meters
self._init_meters()
# Pruning strategy
if CONFIG.pruner in ['Rand', 'Mag', 'SNIP', 'GraSP', 'SynFlow', 'SynFlowL2', 'NTKSAP', 'PX']: # Pruning-at-init
ROUNDS = CONFIG.experiment_args['rounds']
sparsity = CONFIG.experiment_args['weight_remaining_ratio']
self.pruner = eval(CONFIG.pruner)(masked_parameters(self.model))
if CONFIG.pruner in ['SynFlow', 'SynFlowL2', 'PX']:
self.model.eval()
for round in range(ROUNDS):
sparse = sparsity**((round + 1) / ROUNDS)
self.pruner.score(self.model, self.loss_fn, self.data['train'], CONFIG.device)
self.pruner.mask(sparse, 'global')
remaining_params, total_params = self.pruner.stats()
logging.info(f'{int(remaining_params)} / {int(total_params)} | {remaining_params / total_params}')
elif CONFIG.pruner in ['IMP']: # Iterative pruning
ROUNDS = CONFIG.experiment_args['rounds']
sparsity = CONFIG.experiment_args['weight_remaining_ratio']
self.pruner = eval(CONFIG.pruner)(masked_parameters(self.model))
initial_state = copy.deepcopy(self.model.state_dict())
for round in range(ROUNDS):
sparse = sparsity**((round + 1) / ROUNDS)
self.model = self.fit(save_checkpoint=False)
self.pruner.score(self.model, self.loss_fn, self.data['train'], CONFIG.device)
self.pruner.mask(sparse, 'global')
remaining_params, total_params = self.pruner.stats()
logging.info(f'{int(remaining_params)} / {int(total_params)} | {remaining_params / total_params}')
db = {}
for k in initial_state:
if 'mask' not in k:
db[k] = initial_state[k]
self.model.load_state_dict(db)
self._init_optimizers()
self._init_meters()
logging.info('Retraining after Iterative Pruning...')
if CONFIG.pruner != 'Dense':
if CONFIG.reshuffle_mask:
self.pruner.shuffle()
if CONFIG.reinit_weights:
kaiming_normal_init(self.model)
if CONFIG.pruner:
self.model.eval()
prune_result = metrics.summary(self.model,
self.pruner.scores,
metrics.flop(self.model, CONFIG.data_input_size, CONFIG.device),
lambda p: prunable(p, False, False))
with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
logging.info(prune_result)
self.can_eval_transfer = True
# Zero-shot Eval
logging.info('Zero-shot Post-pruning Transfer')
self.evaluate_transfer()
def _init_optimizers(self):
self.scaler = torch.cuda.amp.GradScaler(enabled=True)
if CONFIG.dataset == 'ImageNet10':
self.optimizer = torch.optim.SGD([p for p in self.model.parameters() if p.requires_grad], lr=5e-5, momentum=0.9, weight_decay=1e-4)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[30, 60, 80], gamma=0.1)
self.loss_fn = lambda input, target: F.mse_loss(input, F.one_hot(target, num_classes=CONFIG.num_classes).float())
self.loss_fn_eval = lambda input, target: F.mse_loss(input, F.one_hot(target, num_classes=CONFIG.num_classes).float(), reduction='sum')
def _init_meters(self):
if CONFIG.dataset in ['ImageNet10']:
self.acc_tot = Accuracy(task='multiclass', num_classes=CONFIG.num_classes)
self.acc_tot = self.acc_tot.to(CONFIG.device)
def fit(self, save_checkpoint=True):
best_model = None
# Load Checkpoint
current_epoch = 0
if os.path.exists(os.path.join('record', CONFIG.experiment_name, 'last.pth')):
ckpt = torch.load(os.path.join('record', CONFIG.experiment_name, 'last.pth'))
current_epoch = ckpt['current_epoch']
self.model.load_state_dict(ckpt['model'])
self.optimizer.load_state_dict(ckpt['optimizer'])
self.scheduler.load_state_dict(ckpt['scheduler'])
# Train loop
for epoch in range(current_epoch, CONFIG.epochs):
self.model.train()
if CONFIG.experiment_args['freeze_bn_fit']:
self.model.eval()
# Train epoch
for batch_idx, data_tuple in tqdm(enumerate(self.data['train'])):
if CONFIG.dataset in ['ImageNet10']:
x, y = data_tuple
x = x.to(CONFIG.device)
y = y.to(CONFIG.device)
with torch.autocast(device_type=CONFIG.device, dtype=torch.float16, enabled=True):
logits = self.model(x).squeeze()
loss = self.loss_fn(logits, y) / CONFIG.grad_accum_steps
self.scaler.scale(loss).backward()
if ((batch_idx + 1) % CONFIG.grad_accum_steps == 0) or (batch_idx + 1 == len(self.data['train'])):
self.scaler.step(self.optimizer)
self.optimizer.zero_grad(set_to_none=True)
self.scaler.update()
if CONFIG.use_wandb:
wandb.log({'train_loss': loss.item()})
self.scheduler.step()
# Validation
logging.info(f'[VAL @ Epoch={epoch}]')
if CONFIG.dataset in ['ImageNet10']:
metrics = self.evaluate(self.data['test'])
# Model selection & State management
if save_checkpoint:
ckpt = {}
ckpt['current_epoch'] = epoch + 1
ckpt['model'] = self.model.state_dict()
ckpt['optimizer'] = self.optimizer.state_dict()
ckpt['scheduler'] = self.scheduler.state_dict()
torch.save(ckpt, os.path.join('record', CONFIG.experiment_name, 'last.pth'))
else:
best_model = copy.deepcopy(self.model)
if self.can_eval_transfer:
logging.info('Post-retraining Transfer')
self.evaluate_transfer()
return best_model
@torch.no_grad()
def evaluate(self, loader):
self.model.eval()
# Reset meters
if CONFIG.dataset in ['ImageNet10']:
self.acc_tot.reset()
# Validation loop
loss = [0.0, 0]
for data_tuple in tqdm(loader):
if CONFIG.dataset in ['ImageNet10']:
x, y = data_tuple
x = x.to(CONFIG.device)
y = y.to(CONFIG.device)
with torch.autocast(device_type=CONFIG.device, dtype=torch.float16, enabled=True):
logits = self.model(x).squeeze()
loss[0] += self.loss_fn_eval(logits, y).item()
loss[1] += x.size(0)
if CONFIG.dataset in ['ImageNet10']:
self.acc_tot.update(logits, y)
# Compute metrics
if CONFIG.dataset in ['ImageNet10']:
acc_tot = self.acc_tot.compute()
metrics = {
'Acc': acc_tot.item(),
'Loss': loss[0] / loss[1]
}
logging.info(metrics)
return metrics
@torch.no_grad()
def evaluate_transfer(self):
self.model.eval()
num_splits = {
'ImageNet10': 10
}
for split_nr in range(num_splits[CONFIG.dataset]):
# Load data
data = eval(CONFIG.dataset).load_data(split_nr)
# Initialize model
clean_model = eval(CONFIG.arch)(num_classes=CONFIG.num_classes)
clean_model.fc = nn.Identity()
clean_model = clean_model.to(CONFIG.device)
# Fit ridge classifier
copy_model = copy.deepcopy(self.model)
copy_model.fc = get_ridge_classification_head(clean_model,
data['test'],
CONFIG.num_classes,
CONFIG.device)
clean_model = clean_model.to('cpu')
del clean_model
torch.cuda.empty_cache()
# Reset meters
if CONFIG.dataset in ['ImageNet10']:
self.acc_tot.reset()
# Validation loop
loss = [0.0, 0]
for data_tuple in tqdm(data['test']):
if CONFIG.dataset in ['ImageNet10']:
x, y = data_tuple
x = x.to(CONFIG.device)
y = y.to(CONFIG.device)
with torch.autocast(device_type=CONFIG.device, dtype=torch.float16, enabled=True):
logits = copy_model(x).squeeze()
loss[0] += self.loss_fn_eval(logits, y).item()
loss[1] += x.size(0)
if CONFIG.dataset in ['ImageNet10']:
self.acc_tot.update(logits, y)
# Compute metrics
if CONFIG.dataset in ['ImageNet10']:
acc_tot = self.acc_tot.compute()
metrics = {
'Split': split_nr,
'Acc': acc_tot.item(),
'Loss': loss[0] / loss[1]
}
logging.info(metrics)
copy_model = copy_model.to('cpu')
del copy_model
torch.cuda.empty_cache()
return metrics