-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMedianString.py
42 lines (33 loc) · 1.33 KB
/
MedianString.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from HammingDistance import HammingDistance
from Combinations import Combinations
def MedianString(k, *Dna):
median = None
distance = float('inf') # infininty
for comb in Combinations(k):
curr_distance = DistanceBetweenPatternAndAllDnaStrings(comb, *Dna)
if distance > curr_distance:
distance = curr_distance
median = comb
return median
def DistanceBetweenPatternAndAllDnaStrings(Pattern, *Dna):
k = len(Pattern)
total_distance = 0
for string in Dna:
distance = float('inf')
for i in range(len(string) - k + 1):
curr_kmer = string[i: i + k]
curr_distance = HammingDistance(curr_kmer, Pattern)
if distance > curr_distance:
distance = curr_distance
total_distance += distance
return total_distance
# if __name__ == "__main__":
# import subprocess
# from file_io import outputter, inputter
# with open('../../Downloads/dataset_158_9 (5).txt') as input_file:
# args = [inputter.inputter(word) for line in input_file for word in line.split()]
# # produce output here
# output = MedianString(*args)
# with open('output.txt', "w") as output_file:
# output_file.write(outputter.outputter(output))
# subprocess.run(['open', 'output.txt']) # display in default GUI