-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
767e618
commit 83cc245
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "Best Practices", | ||
"version": "0.3.2", | ||
"provenance": [], | ||
"collapsed_sections": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "Ii_Vk8PnLyKt", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Convolutonal Neural Network" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "S2xxpV0sL403", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"01. Always use transfer learning. No point in training from scratch. Even if domain is completly different, still low level feathure can be fine tuned with low learning rates while higher level of abstraction can be trained by usaul procedure. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "eh7jHpZ0L4zR", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"02. *Use* different learning rate for different layers." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "UXtxnHTQMz1P", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Recurrent Neural Netowork" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "ZfKMjq3_M2RO", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "Q4x6DTGbM2hD", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Generative Advesarial Networks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "p2r6fCrEM2fN", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"01. Sample from Standard Normal distribution or Standard-T distribution. Avoid using uniform distribution. Standard Laplacian distribution works fine but a large fraction of sample is zero." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "usGN5F7iOEgn", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"02. Use dropout in both train and test phase. Keep probability between 0.5 to 0.6" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "1ZEyHFzdO3S7", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"03. ADAM for generator and SGD for discrimintor." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "SVToeYlFO3Qw", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "Gi4ONO79NMse", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Generative Network" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "GONtswtPNUvn", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "-Bbx_UbEM8ll", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Bayesian Neural Network" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "jHyjuyCPM8ju", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "N8kzQ9_YNHuG", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Gaussain Processes" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "8wH46_lxNV8B", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"" | ||
] | ||
} | ||
] | ||
} |