-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
83 lines (67 loc) · 3.31 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import model.loss as module_loss
import model.metric as module_metric
from importlib import import_module
from utils.util import prepare_device
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def run(config, train=True):
"""
:param config: The configuration to use for the run.
:param train: Train mode or not.
"""
logger = config.get_logger('train' if train else 'test')
# Add the debug argument to the dataloader arguments.
config['data_loader']['args']['debug'] = config['debug']
# setup data_loader instances
if not train:
config['data_loader']['args']['training'] = False
data_loader = config.init_obj('data_loader')
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config['n_gpu'])
logger.info(f"Working on device: {device}")
# build model architecture, then print to console
config['arch']['args']['device'] = device # Add the device to the config.
model = config.init_obj('arch')
logger.info(model)
# Move model to device.
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
# criterion = getattr(module_loss, config['loss'])()
criterion = getattr(module_loss, config['loss'])
train_metric_fns = [getattr(module_metric, met) for met in config['metrics']['train_metrics']]
eval_metric_fns = [getattr(module_metric, met) for met in config['metrics']['eval_metrics']]
test_metric_fns = [getattr(module_metric, met) for met in config['metrics']['test_metrics']]
if train: # Run trainer.
valid_data_loader = data_loader.split_validation()
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
cfg_trainer = config['trainer']
trainer_module = import_module(cfg_trainer['module'])
trainer_class = getattr(trainer_module, cfg_trainer['type'])
trainer = trainer_class(model, criterion, train_metric_fns, eval_metric_fns, optimizer,
config=config,
device=device,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler)
trainer.train()
else: # Run tester.
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
model.eval()
logger.info("Checkpoint loaded.")
cfg_tester = config['tester']
tester_module = import_module(cfg_tester['module'])
tester_class = getattr(tester_module, cfg_tester['type'])
tester = tester_class(model, criterion, test_metric_fns,
config=config,
device=device,
data_loader=data_loader, evaluation=False)
tester.test()