-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
233 lines (185 loc) · 7.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import wandb
import random
import torch
import tqdm
import math
import matplotlib.pyplot as plt
from huggingface_hub import login
from transformers import AutoTokenizer
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
from zeta.optim import StableAdamWUnfused
from auto_regressive_wrapper import AutoRegressiveWrapper
from bitnet_transformer import BitNetTransformer
from datasets import load_dataset
# Device constants
CUDA_DEVICE = 'cuda'
CPU_DEVICE = 'cpu'
WANDB_TOKEN = 'daa53cc82d1d36b20894bdfb5c0d940f71df1cae'
HF_TOKEN = 'hf'
DATASET = "abideen/Cosmopedia-100k-pretrain"
MODEL_CONFIG = "NousResearch/Llama-2-7b-hf"
epochs = int(10000)
batch_size = 4
gradient_accumulate_every = 4
lr = 2e-4
weight_decay = 1e-2
validate_at_every = 1
generate_at_every = 100
generate_str_length = 256
sequence_length = 512
cuda_available = torch.cuda.is_available()
device = None
if cuda_available:
device = torch.device(CUDA_DEVICE)
print(f"Using CUDA device: {torch.cuda.get_device_name(0)}")
else:
device = torch.device(CPU_DEVICE)
print("Using CPU")
def cycle(loader):
while True:
yield from loader
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG)
model = BitNetTransformer(num_tokens=tokenizer.vocab_size, dim=512, depth=8)
model = AutoRegressiveWrapper(model, max_sequence_length=sequence_length).to(device)
if device == CUDA_DEVICE:
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs!")
model = torch.nn.DataParallel(model)
model.cuda()
wandb.login(key=WANDB_TOKEN)
wandb.init(
project="bitnet-1.58",
# track hyperparameters and run metadata
config={
"learning_rate": lr,
"architecture": "bitnet1.58b",
"dataset": DATASET,
"epochs": epochs,
}
)
dataset = load_dataset(DATASET)
class BitnetDataset(Dataset):
def __init__(self, tokenizer, prompts, texts, max_length):
self.tokenizer = tokenizer
self.prompts = prompts
self.texts = texts
self.max_length = max_length
def __len__(self):
return len(self.prompts)
def __getitem__(self, idx):
prompt = self.prompts[idx]
response = self.texts[idx]
inputs = self.tokenizer(response, max_length=self.max_length, padding='max_length', truncation=True, return_tensors='pt')
return prompt, inputs
train_split = 'train'
split_ratio = 0.9
train_size = int(split_ratio * len(dataset[train_split]))
val_size = len(dataset[train_split]) - train_size
train_dataset_prompts = dataset[train_split]['prompt'][:train_size]
train_dataset_texts = dataset[train_split]['text'][:train_size]
val_dataset_prompts = dataset[train_split]['prompt'][train_size:]
val_dataset_texts = dataset[train_split]['text'][train_size:]
train_bitnet_dataset = BitnetDataset(tokenizer, train_dataset_prompts, train_dataset_texts, max_length=sequence_length)
val_bitnet_dataset = BitnetDataset(tokenizer, val_dataset_prompts, val_dataset_texts, max_length=sequence_length)
train_loader = cycle(DataLoader(train_bitnet_dataset, batch_size=batch_size, shuffle=False))
val_loader = cycle(DataLoader(val_bitnet_dataset, batch_size=batch_size, shuffle=False))
optim = StableAdamWUnfused( model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = ReduceLROnPlateau(optim, mode='min', factor=0.5, patience=3, verbose=True, cooldown=2)
train_losses_at_val_interval = []
train_losses = []
val_losses = []
grad_norms = []
learning_rates = []
best_val_loss = float('inf')
best_epoch = 0
for i in tqdm.tqdm(range(epochs), desc="training"):
# i = i+1
model.train()
total_loss = 0
for __ in range(gradient_accumulate_every):
_, train_text = next(train_loader)
input_ids = train_text['input_ids'].squeeze(1).to(device)
loss = model(input_ids)
loss.mean().backward()
train_losses.append(loss.mean().item())
print(f"training loss: {loss.mean().item()}")
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
grad_norms.append(grad_norm)
optim.step()
optim.zero_grad()
if i % validate_at_every == 0:
train_losses_at_val_interval.append(loss.mean().item())
wandb.log({'training_loss': loss.mean().item()})
model.eval()
with torch.no_grad():
_, val_text = next(val_loader)
input_ids = val_text['input_ids'].squeeze(1).to(device)
val_loss = model(input_ids).mean().item()
val_losses.append(val_loss)
print(f"validation loss: {val_loss}")
wandb.log({'validation_loss': val_loss})
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model_state = model.state_dict()
torch.save(best_model_state, 'new_bitnet_model.pth')
print(f"Best Model Saved!!!")
# Step the learning rate scheduler
scheduler.step(val_losses[i])
current_lr = optim.param_groups[0]['lr']
learning_rates.append(current_lr)
wandb.log({'learning_rate': learning_rates[i], 'grad_norm': grad_norms[i]})
if i % generate_at_every == 0:
model.eval()
with torch.no_grad():
val_dataset_length = len(val_bitnet_dataset)
val_loader_length = math.ceil(val_dataset_length / batch_size)
random_idx = random.randint(0, val_loader_length - 1)
for idx, val_batch in enumerate(val_loader):
if idx == random_idx:
val_prompt, _ = val_batch
random_prompt_idx = random.randint(0, len(val_prompt) - 1)
prompt = val_prompt[random_prompt_idx]
print(f"Prompt text: {prompt}")
tokenized_prompt = tokenizer(prompt, max_length=sequence_length, padding='max_length', truncation=True, return_tensors='pt')
prompt_input_ids = tokenized_prompt['input_ids']
generated_ids = model.generate(prompt_input_ids.to(device), sequence_length=generate_str_length)
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(f'{"*" * 100}')
print(f"Generated text: {generated_text}")
break
# Plotting Visualizations
# 1 Plotting grad norm over epochs
epochs = range(1, len(grad_norms) + 1)
plt.plot(epochs, grad_norms, 'b', label='Grad norm')
plt.title('Grad Norm/Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 2 plotting training losses over epochs
epochs = range(1, len(train_losses) + 1)
plt.plot(epochs, train_losses, 'b', label='Training loss')
plt.title('Training Losses')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 3 plotting validation losses over epochs
epochs = range(1, len(train_losses) + 1)
plt.plot(epochs, train_losses, 'b', label='Training loss')
plt.title('Validation Losses')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 4 plotting learning rate over epochs
epochs = range(1, len(learning_rates) + 1)
plt.figure(figsize=(16, 10))
plt.plot(range(0, epochs), learning_rates, color='green', label='Learning Rate')
plt.title('Learning Rate over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Learning Rate')
plt.legend()
plt.grid(True)
plt.show()