-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgreensfcn_doc.tex
268 lines (234 loc) · 16 KB
/
greensfcn_doc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
\documentclass[letterpaper]{article}
\usepackage{amsmath}
\newcommand{\cedilla}{\text{\c{c}}}
\begin{document}
The 1D thermal Green's function for an impulse source on the boundary of a half-space is
\begin{equation}
\frac{2}{\rho c \left[4\pi (k/(\rho c))t\right]^{1/2}}\exp\left(-\frac{z^{2}}{4 (k/(\rho c)) t}\right) \ \ \ \ \ \ (t > 0)
\end{equation}
( This is twice the full-space green's function: half of the energy flows into the material -- the other half flows in the other direction where we don't really care about it).
The 3D thermal Green's function for an impulse source on the boundary of a half-space is likewise
\begin{equation}
\frac{2}{\rho c \left[4\pi (k/(\rho c))t\right]^{3/2}}\exp\left(-\frac{|r|^{2}}{4 (k/(\rho c)) t}\right) \ \ \ \ \ \ (t > 0)
\end{equation}
The effective heat source of a buried delamination superimposes with the 1D greens function of the flash to give zero heat flux in the $z$ direction at the delamination.
Therefore the heat source is $k \frac{\partial T}{\partial z}$ as a 1D $g(z,t)$, for a half-space greens's function
This derivative of the 1D Green's function is:
\begin{equation}
k\frac{\partial T}{\partial z}=\frac{2k}{\rho c \left[4\pi (k/(\rho c))t\right]^{1/2}}\exp\left(-\frac{z^{2}}{4 (k/(\rho c)) t}\right)\left(-\frac{z}{2(k/(\rho c))t}\right) \ \ \ \ \ \ (t > 0)
\end{equation}
The temporal convolution of this source with the the 3D Green's function is
coefficients and substituting $\alpha$ for $k/(\rho c)$ is
\begin{equation}
-\frac{4kz}{2\rho^{2} c^{2}\alpha\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\tau}\frac{1}{\left[4\alpha\tau\right]^{1/2}}\exp\left(-\frac{z^{2}}{4\alpha\tau}\right)\frac{1}{\left[4\alpha(t-\tau)\right]^{3/2}}\exp\left(-\frac{|r|^{2}}{4\alpha(t-\tau)}\right)
\end{equation}
where the integrand is defined to be zero where $\tau < 0$ or $(t-\tau) < 0$.
Pull in the $\tau$ in the denominator and a $4\alpha$ changing the 1/2 to 3/2:
\begin{equation}
-\frac{8\alpha z}{\rho c\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\left[4\alpha\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha\tau}\right)\frac{1}{\left[4\alpha(t-\tau)\right]^{3/2}}\exp\left(-\frac{|r|^{2}}{4\alpha(t-\tau)}\right)
\end{equation}
The constraint on the integrand can be converted to bounds on the integration:
\begin{equation}
-\frac{8\alpha z}{\rho c\pi^{2}} \int_{0}^{t}\frac{1}{\left[4\alpha\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha\tau}\right)\frac{1}{\left[4\alpha(t-\tau)\right]^{3/2}}\exp\left(-\frac{|r|^{2}}{4\alpha(t-\tau)}\right) d\tau
\end{equation}
This integral can be nondimensionalized by substituting $u=4\alpha\tau/z^{2}$, $v=4\alpha t/z^{2}$, and $\cedilla=|r|/|z|$. Therefore
$(v-u)=(4\alpha/z^{2})(t-\tau)$, $(v-u)/\cedilla^{2}=(4\alpha/|r|^{2})(t-\tau)$,
and $du=(4\alpha/z^{2})d\tau$
\begin{equation}
-\frac{8\alpha z}{\rho c\pi^{2}}\frac{z^{2}}{4\alpha}\int_{0}^{v}\frac{1}{\left[uz^{2}\right]^{3/2}}\exp\left(-\frac{1}{u}\right) \frac{1}{\left[(v-u)(|r|^{2}/\cedilla^{2})\right]^{3/2}}\exp\left(-\frac{\cedilla^{2}}{v-u}\right) du
\end{equation}
or
\begin{equation}
-\frac{8\alpha z}{\rho c\pi^{2}}\frac{z^{2}}{4\alpha}\frac{1}{|z|^{3}\left[(|r|^{2}/\cedilla^{2})\right]^{3/2}}\int_{0}^{v}\frac{1}{\left[u\right]^{3/2}\left[v-u\right]^{3/2}}\exp\left(-\frac{1}{u}-\frac{\cedilla^{2}}{v-u}\right) du
\end{equation}
or, canceling leading variables
\begin{equation}
-\frac{2}{\rho c\pi^{2}} \frac{1}{\left[(|r|^{2}/\cedilla^{2})\right]^{3/2}}\int_{0}^{v}\frac{1}{\left[u\right]^{3/2}\left[v-u\right]^{3/2}}\exp\left(-\frac{1}{u}-\frac{\cedilla^{2}}{v-u}\right) du
\end{equation}
... and since $|r|/\cedilla = z$,
\begin{equation}
-\frac{2}{\rho c\pi^{2}z^{3}} \int_{0}^{v}\frac{1}{\left[u\right]^{3/2}\left[v-u\right]^{3/2}}\exp\left(-\frac{1}{u}-\frac{\cedilla^{2}}{v-u}\right) du
\end{equation}
%NOTE: P defined two distinct $c$ variables: heat capacity (in leading coefficeint) vs. nondimensionalization parameter. DO NOT CONFUSE... SHOULD FIX!
Now consider extreme case where $\cedilla^{2} >> v$ and $\cedilla^{2} >> 1$:
Recall $\cedilla^{2}/v = |r|^{2}/(4\alpha t)$
Rewrite as
\begin{equation}
-\frac{2}{\rho c\pi^{2}z^{3}} \int_{0}^{v}\frac{1}{\left[u\right]^{3/2}\left[v-u\right]^{3/2}}\exp\left(-\frac{1}{u}-\frac{1}{v-u}-\frac{(\cedilla^{2}-1)}{v-u}\right) du
\end{equation}
... Must be no greater than
\begin{equation}
-\frac{2}{\rho c\pi^{2}z^{3}} \int_{0}^{v}\frac{1}{\left[u\right]^{3/2}\left[v-u\right]^{3/2}}\exp\left(-\frac{1}{u}-\frac{1}{v-u}\right) du \exp\left(-\frac{(\cedilla^{2}-1)}{v}\right)
\end{equation}
The integral is the same as our previous integral,
but at $\cedilla=1$. This never exceeds 0.185
so a simple upper bound on the value of the expression is
\begin{equation}
-\frac{2}{\rho c\pi^{2}z^{3}}0.185*\exp\left(-\frac{(\cedilla^{2}-1)}{v}\right)
\end{equation}
\section{Extension to anisotropic media aligned with coordinate axes}
$k$ now has three components (actually a diagonal tensor),
$k_{x}$,$k_{y}$, and $k_{z}$.
The 1D thermal Green's function for a boundary impulse:
\begin{equation}
\frac{2}{\rho c \left[4\pi (k_{z}/(\rho c))t\right]^{1/2}}\exp\left(-\frac{z^{2}}{4 (k_{z}/(\rho c)) t}\right) \ \ \ \ \ \ (t > 0)
\end{equation}
The 3D thermal Green's function for a boundary impulse is the product
of three 1D solutions:
\begin{equation}
\frac{2}{\rho c k_{x}^{1/2}k_{y}^{1/2}k_{z}^{1/2}\left[4\pi (1/(\rho c))t\right]^{3/2}}\exp\left(-\frac{|x|^{2}}{4 (k_{x}/(\rho c)) t} -\frac{|y|^{2}}{4 (k_{y}/(\rho c)) t} -\frac{|z|^{2}}{4 (k_{z}/(\rho c)) t} \right) \ \ \ \ \ \ (t > 0)
\end{equation}
Derivative of the 1D Green's function is:
\begin{equation}
k_{z}\frac{\partial T}{\partial z}=\frac{2k_{z}}{\rho c \left[4\pi (k_{z}/(\rho c))t\right]^{1/2}}\exp\left(-\frac{z^{2}}{4 (k_{z}/(\rho c)) t}\right)\left(-\frac{z}{2(k_{z}/(\rho c))t}\right) \ \ \ \ \ \ (t > 0)
\end{equation}
The temporal convolution of this source with the 3D Green's function is
substituting $\alpha_{z}$ for $k_{z}/(\rho c)$ is
\begin{equation}
-\frac{4k_{z}z}{2\rho^{2} c^{2}\alpha_{z}\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\tau}\frac{1}{\left[4\alpha_{z}\tau\right]^{1/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{k_{x}^{1/2}k_{y}^{1/2}k_{z}^{1/2}\left[4(1/(\rho c))(t-\tau)\right]^{3/2}}\exp\left(-\frac{|x_{m}|^{2}}{4 (k_{x}/(\rho c)) (t-\tau)} -\frac{|y_{m}|^{2}}{4 (k_{y}/(\rho c)) (t-\tau)} -\frac{|z_{m}|^{2}}{4 (k_{z}/(\rho c)) (t-\tau)}\right)
\label{eq:3danisok}
\end{equation}
at measurement coordinates $(x_{m},y_{m},z_{m})$ relative to the reflector position
Define $\alpha_{x} = k_{x}/\rho c$, $\alpha_{y} = k_{y}/\rho c$, and
$\alpha_{xyz}=\sqrt[3]{k_{x}k_{y}k_{z}/(\rho c)^{3}}$:
\begin{equation}
-\frac{4k_{z}z}{2\rho^{2} c^{2}\alpha_{z}\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\tau}\frac{1}{\left[4\alpha_{z}\tau\right]^{1/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{\left[4\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left(-\frac{|x_{m}|^{2}}{4 \alpha_{x} (t-\tau)} -\frac{|y_{m}|^{2}}{4 \alpha_{y} (t-\tau)} -\frac{|z_{m}|^{2}}{4 \alpha_{z} (t-\tau)}\right)
\label{eq:3danisoalpha}
\end{equation}
Pull in the tau in denominator and a $4 \alpha_{z}$:
\begin{equation}
-\frac{8\alpha_{z}z}{\rho c\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\left[4\alpha_{z}\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{\left[4(\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left(-\frac{|x_{m}|^{2}}{4 \alpha_{x} (t-\tau)} -\frac{|y_{m}|^{2}}{4 \alpha_{y} (t-\tau)} -\frac{|z_{m}|^{2}}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
Set integral bounds
\begin{equation}
-\frac{8\alpha_{z}z}{\rho c\pi^{2}} \int_{0}^{t}\frac{1}{\left[4\alpha_{z}\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{\left[4(\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left(-\frac{|x_{m}|^{2}}{4 \alpha_{x} (t-\tau)} -\frac{|y_{m}|^{2}}{4 \alpha_{y} (t-\tau)} -\frac{|z_{m}|^{2}}{4 \alpha_{z} (t-\tau)}\right) d\tau
\end{equation}
%Assume transverse isotropy ($k_{x}$=$k_{y}$=$k_{xy}$ therefore $\alpha_{x}=\alpha_{y}=\alpha_{xy}$).
Define $\cedilla=(\sqrt{x_{m}^{2}(\alpha_{z}/\alpha_{x})+y_{m}^{2}(\alpha_{z}/\alpha_{y})+z_{m}^{2}}/|z|)$
\\
Observe:
\begin{equation}
\left(-\frac{|x_{m}|^{2}}{4 \alpha_{x} (t-\tau)} -\frac{|y_{m}|^{2}}{4 \alpha_{y} (t-\tau)} -\frac{|z_{m}|^{2}}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
\begin{equation}
=\left(-\frac{|x_{m}|^{2}(\alpha_{z}/\alpha_{x})}{4 \alpha_{z} (t-\tau)} -\frac{|y_{m}|^{2}(\alpha_{z}/\alpha_{y})}{4 \alpha_{z} (t-\tau)} -\frac{|z_{m}|^{2}(\alpha_{z}/\alpha_{z})}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
\begin{equation}
=\left(-\frac{|x_{m}|^{2}(\alpha_{z}/\alpha_{x}) + |y_{m}|^{2}(\alpha_{z}/\alpha_{y}) + |z_{m}|^{2}(\alpha_{z}/\alpha_{z})}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
\begin{equation}
=\left(\frac{-\cedilla^{2} |z|^{2}}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
Nondimensionalize everythig by substituting $u=4\alpha_{z}\tau/z^{2}$, $v=4\alpha_{z} t/z^{2}$, and . Therefore
$(v-u)=(4\alpha_{z}/z^{2})(t-\tau)$, $(\alpha_{xyz}/\alpha_{z})(v-u)=(4\alpha_{xyz}/z^{2})(t-\tau)$ and $du=(4\alpha_{z}/z^{2})d\tau$.
The exponent
\begin{equation}
\left(\frac{-\cedilla^{2} |z|^{2}}{4 \alpha_{z} (t-\tau)}\right)
\end{equation}
becomes
\begin{equation}
\left(\frac{-\cedilla^{2}}{v-u}\right)
\end{equation}
%and
%\begin{equation}
%\frac{\alpha_{z}}{\alpha_{xyz}}u = 4\alpha_{z}\tau/z^{2}
%\end{equation}
The original expression can now be reduced to:
\begin{equation}
-\frac{2 z\alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{4}} \int_{0}^{v}\frac{1}{\left[u\right]^{3/2}}\exp\left(-\frac{1}{u}\right)\frac{1}{\left[(v-u)\right]^{3/2}}\exp\left(\frac{-\cedilla^{2}}{v-u}\right) du
\end{equation}
Coalesce:
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}} \int_{0}^{v}\frac{1}{(v-u)^{3/2}\left[u\right]^{3/2}}\exp\left(-\frac{1}{u} - \frac{\cedilla^{2}}{v-u}\right) du
\end{equation}
Alternate representation: Integral from 0...1.\\
let $s=u/v$. Now $du = v ds$ and $s=1$ when $u=v$
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}} \int_{0}^{1}\frac{1}{(v-vx)^{3/2}\left[vs\right]^{3/2}}\exp\left(-\frac{1}{vs} - \frac{\cedilla^{2}}{v-vs}\right) v ds
\end{equation}
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\exp\left(-\frac{1-s + s\cedilla^{2}}{vs(1-s)}\right) ds
\end{equation}
let $a=\cedilla^{2}-1$
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\exp\left(-\frac{1 + as}{vs(1-s)}\right) ds
\end{equation}
...
%ExtraVolumeFactor = 0.25*Pred_kx[:,:,:]*np.sqrt(np.pi*alphaz*Pred_t[:,:,:])
Considering the alternative scenario (curved) where there
is a leading factor in the approximate 3D Green's function of the form
\[
\frac{1}{1+\frac{1}{4}\kappa \sqrt{\pi\alpha_{z}t}},
\]
where $\kappa$ is the curvature. The $\frac{1}{4}\kappa \sqrt{\pi\alpha_{z}t}$ term in the denominator is bounded to be not smaller than -0.6 nor greater than +1.0 based on empirical observation of the quality of the approximation.
In the concave case there are additional factors multiplied by the $|x_{m}|^{2}$ term in the exponent, of
\begin{equation}
(1 + z\kappa) \ \ \ \mbox{and}\ \ \ \left(1+\frac{1}{12}\theta^{2}\right)^{2\left(1-\frac{z}{|x||\theta/2 + \theta^{3}/24|}\right)}
\end{equation}
where $\theta \equiv \kappa x$ is bounded to not exceed $\pi/2$ in magnitude
and the second factor (the ``deceleration'') is bounded to not be lower than 1.0.
In the convex case the $|x_{m}|^{2}$ term in the exponent is replaced
by
\begin{equation}
\left( -\frac{((1/|\kappa|) - z_{m})^{2}(\alpha_{z}/\alpha_{x})\left(1+\frac{|\kappa| z}{1-|\kappa| z}\right)\left(4\mbox{ins}^{2}(|\kappa|x_{m}/2)\right)}{4\alpha_{z}(t-\tau)} \right)
\end{equation}
where
$\mbox{ins}^{2}(x)$ (``inner sin squared'') is defined as
\begin{equation}
\mbox{ins}^{2}(x) \equiv \begin{cases} \sin^{2}(x) & |x| < \pi/4.0 \\ 0.25 + (|x| - \pi/4 + 0.5)^{2} & \mbox{otherwise} \end{cases}
\end{equation}
Continuing as in Eq.~\ref{eq:3danisoalpha},
\begin{equation}
-\frac{4k_{z}z}{2\rho^{2} c^{2}\alpha_{z}\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\tau}\frac{1}{\left[4\alpha_{z}\tau\right]^{1/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{1+\frac{1}{4}\kappa \sqrt{\pi\alpha_{z}(t-\tau)}}\frac{1}{\left[4\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left( ... \right)
\end{equation}
Pull in the tau in denominator and a $4 \alpha_{z}$:
\begin{equation}
-\frac{8\alpha_{z}z}{\rho c\pi^{2}} \int_{-\infty}^{\infty}\frac{1}{\left[4\alpha_{z}\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{1+\frac{1}{4}\kappa \sqrt{\pi\alpha_{z}(t-\tau)}}\frac{1}{\left[4(\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left( ... \right)
\end{equation}
Set integral bounds
\begin{equation}
-\frac{8\alpha_{z}z}{\rho c\pi^{2}} \int_{0}^{t}\frac{1}{\left[4\alpha_{z}\tau\right]^{3/2}}\exp\left(-\frac{z^{2}}{4\alpha_{z}\tau}\right)\frac{1}{1+\frac{1}{4}\kappa \sqrt{\pi\alpha_{z}(t-\tau)}}\frac{1}{\left[4(\alpha_{xyz}(t-\tau)\right]^{3/2}}\exp\left( ... \right) d\tau
\end{equation}
Performing similar subtitutions,
where
\begin{equation}
\cedilla=\begin{cases}
\sqrt{x_{m}^{2}(1 + z\kappa)\left(1+\frac{1}{12}\theta^{2}\right)^{2\left(1-\frac{z}{|x||\theta/2 + \theta^{3}/24|}\right)}(\alpha_{z}/\alpha_{x})+y_{m}^{2}(\alpha_{z}/\alpha_{y})+z_{m}^{2}}/|z| & \mbox{(concave)} \\
\sqrt{(\left[1/|\kappa|\right] - z_{m})^{2}\left(1+\frac{|\kappa| z}{1-|\kappa| z}\right)\left(4\mbox{ins}^{2}(|\kappa|x_{m}/2)\right)(\frac{\alpha_{z}}{\alpha_{x}})+y_{m}^{2}(\frac{\alpha_{z}}{\alpha_{y}})+z_{m}^{2}}/|z| & \mbox{(convex)} \\
\end{cases}
\end{equation}
(where as before $|\theta|$ is bounded to not exceed $\pi/2$ and the $\left(1+\frac{1}{12}\theta^{2}\right)^{2\left(1-\frac{z}{|x||\theta/2 + \theta^{3}/24|}\right)}$ factor in the concave case is bounded to be not less than 1.0)
and in addition
$w \equiv \kappa z \sqrt{\pi}/8$:
\begin{equation}
-\frac{2 z\alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{4}} \int_{0}^{v}\frac{1}{\left[u\right]^{3/2}}\exp\left(-\frac{1}{u}\right)\frac{1}{1+w \sqrt{(v-u)}}\frac{1}{\left[(v-u)\right]^{3/2}}\exp\left(\frac{-\cedilla^{2}}{v-u}\right) du
\end{equation}
Alternate representation: Integral from 0...1.\\
let $s=u/v$. Now $du = v ds$ and $s=1$ when $u=v$; let $a=\cedilla^{2}-1$
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\frac{1}{1+w \sqrt{v(1-s)}}\exp\left(-\frac{1 + as}{vs(1-s)}\right) ds
\end{equation}
Recall that the $w\sqrt{v(1-s)}$ term in the denominator is bounded to be not smaller than -0.6 nor greater than +1.0
A not-so-great approxmation is to take the divisor of $1+w \sqrt{v(1-s)}$
and factor it out in front of the integral. For large $v$ the
integrand (see plot\_integrand.py, esp. last figure) has a very sharp peak
at s=0 which will have a sifting property replacing $s$ by $0$, enabling us to
factor it out as
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \frac{1}{1+w \sqrt{v}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\exp\left(-\frac{1 + as}{vs(1-s)}\right) ds
\end{equation}
At c=1 (meaning directly above the source) and smaller $v$ the integrand peak is in the middle at s=0.5 which would give us
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \frac{1}{1+w \sqrt{v/2}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\exp\left(-\frac{1 + as}{vs(1-s)}\right) ds
\end{equation}
Given that the latter case is going to be more dominant in the greensinversion
application we will approximate between $1$ and $1/\sqrt{2}$ as $0.8$:
\begin{equation}
-\frac{2 \alpha_{z}^{3/2}}{\rho c\pi^{2}\alpha_{xyz}^{3/2}z^{3}v^{2}} \frac{1}{1+0.8 w \sqrt{v}} \int_{0}^{1}\frac{1}{(1-s)^{3/2}\left[s\right]^{3/2}}\exp\left(-\frac{1 + as}{vs(1-s)}\right) ds
\end{equation}
where $w\sqrt{v}$ is bounded to be not smaller than -0.6 nor greater than +1.0.
The result of this approximation keeps the integral a function of only
two variables ($v$ and $c$ -- or equivalently $v$ and $a$) and brings
the third parameter $w$ out in front as a leading coefficient. The simpler integral is easier to calculate
by look-up table interpolation.
\end{document}