-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
98 lines (81 loc) · 3.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.loader import DataLoader
from model import BodySeg
from dataset import HumanSeg
from torch.utils.tensorboard import SummaryWriter
train_dataset_path = '/path to/train_data'
eval_dataset_path = '/path to/eval_data'
checkpoints_path = '/path to/checkpoints/'
log_dir = '/path to/runs' # location of tensorboard logs
body_parts = 4
batch_size = 1
lr = 0.0001
epoch = 500
transform = T.Compose([
# T.RandomJitter(0.01),
T.RandomRotate(15, axis=0),
T.RandomRotate(15, axis=1),
T.RandomRotate(15, axis=2),
])
pre_transform = T.NormalizeScale()
train_dataset = HumanSeg(train_dataset_path, include_normals=False, transform=transform, body_part=body_parts)
eval_dataset = HumanSeg(eval_dataset_path, include_normals=False, transform=transform, body_part=body_parts)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
eval_loader = DataLoader(eval_dataset, batch_size=1, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BodySeg(3, train_dataset.num_classes, dim_model=[32, 64, 128, 256, 512], k=16).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
writer = SummaryWriter(log_dir=log_dir) # tensorboard --logdir /runs
def train():
model.train()
total_loss = correct_nodes = total_nodes = 0
for i, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.pos, data.batch)
data.y = data.y.squeeze(1)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item()
correct_nodes += out.argmax(dim=1).eq(data.y).sum().item()
total_nodes += data.num_nodes
acc = correct_nodes / total_nodes
# print(f'Loss: {total_loss / 10:.4f} 'f'Train Acc: {acc:.4f}')
return acc, total_loss
def validation(loader):
model.eval()
correct_nodes = total_nodes = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.pos, data.batch)
correct_nodes += out.argmax(dim=1).eq(data.y.squeeze(1)).sum().item()
total_nodes += data.num_nodes
eval_acc = correct_nodes / total_nodes
# print(f'Eval Acc: {eval_acc:.4f}')
return eval_acc
best_eval_acc = 0
best_epoch = 0
flag = 0
for epoch in range(1, epoch+1):
print('epoch:', epoch)
train_acc, train_loss = train()
if epoch%10 == 0:
torch.save(model.state_dict(), checkpoints_path + 'latest.pt')
eval_acc = validation(eval_loader)
writer.add_scalars('Body Segmentation train', {'validation accuracy': eval_acc}, epoch)
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_epoch = epoch
torch.save(model.state_dict(), checkpoints_path + 'best.pt')
print(f'Best Eval Acc: {best_eval_acc:.4f}, Best Epoch: {best_epoch}')
if train_acc > 0.8:
flag = 1
if flag == 1:
scheduler.step()
writer.add_scalars('Body Segmentation train',
{'training loss': train_loss,
'training accuracy': train_acc}, epoch)