-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_torch_sage.py
159 lines (117 loc) · 5.78 KB
/
train_torch_sage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys
from collections import defaultdict
from timeit import default_timer as timer
import numpy as np
import os
import scipy.sparse
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import f1_score
from absl import flags, app
from models_pytorch.sage import GraphSage
from framework.compact_adj import CompactAdjacency as CompAdj
from framework import traversals
from training_loops import datasets
from tqdm import tqdm
flags.DEFINE_float('lr', 1e-3, 'Learning rate')
flags.DEFINE_integer('epochs', 200, '')
flags.DEFINE_integer('batch_size', 512, '')
flags.DEFINE_integer('num_workers', 0, 'Number of dataloader workers to spawn during training')
flags.DEFINE_string('fanouts', '5x5', 'list of integers separated with "x".')
flags.DEFINE_string('device', 'cpu', 'Should be "cpu" or "cuda" or any valid torch device name')
flags.DEFINE_string('data_dir', '../../datasets', 'Data directory')
flags.DEFINE_string('dataset', 'reddit', 'Dataset')
flags.DEFINE_string('hidden_dims', '256,256', 'Comma separated list of hidden dims')
flags.DEFINE_float('dropout', 0.5, 'Dropout probability')
FLAGS = flags.FLAGS
class GraphDataset(torch.utils.data.dataset.Dataset):
def __init__(self, V, labels):
self.V = V
self.labels = labels
def __getitem__(self, index):
return self.V[index], self.labels[self.V[index]]
def __len__(self):
return len(self.V)
class WalkForestCollator:
def __init__(self, compAdj: CompAdj, fanouts):
self.compAdj = compAdj
self.fanouts = fanouts
def __call__(self, batch):
batch_np = np.array(batch, dtype=object)
node_ids = batch_np[:, 0].astype(int)
node_labels = torch.from_numpy(batch_np[:, 1].astype(int).flatten())
forest = traversals.np_traverse(self.compAdj, node_ids, self.fanouts)
torch_forest = [torch.from_numpy(forest[0]).flatten()]
for i in range(len(forest) - 1):
torch_forest.append(torch.from_numpy(forest[i + 1]).reshape(-1, self.fanouts[i]))
return torch_forest, node_labels
def train(feat_data, labels, train_comp_adj, val_comp_adj, train_ids, val_ids, fanouts):
dev = torch.device("cuda:0" if (torch.cuda.is_available() & (FLAGS.device == 'cuda')) else "cpu")
print('Training on {}'.format(str(dev)))
train_collator = WalkForestCollator(train_comp_adj, fanouts)
val_collator = WalkForestCollator(val_comp_adj, fanouts)
train_dataset = GraphDataset(train_ids, labels)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=FLAGS.batch_size, shuffle=True, num_workers=FLAGS.num_workers,
collate_fn=train_collator, pin_memory=True)
val_dataset = GraphDataset(val_ids, labels)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1024, shuffle=True, num_workers=FLAGS.num_workers,
collate_fn=val_collator, pin_memory=True)
# Normalize features
train_feats = feat_data[train_ids]
scaler = StandardScaler()
scaler.fit(train_feats)
feat_data = scaler.transform(feat_data)
hidden_dims = list(map(lambda x: int(x), FLAGS.hidden_dims.split(',')))
assert len(hidden_dims) == 2, 'Must specify only two hidden dims for a 2 layer SAGE model'
num_classes = np.max(labels) + 1
net = GraphSage(feat_data, num_classes, hidden_dims[0], hidden_dims[1], FLAGS.dropout)
net.to(dev)
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=FLAGS.lr)
start = timer()
for epoch in range(FLAGS.epochs):
net.train()
Y_true = []
Y_pred = []
for i, (batch_forest, batch_labels) in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
forest = [level.to(device=dev, dtype=torch.long, non_blocking=True) for level in batch_forest]
batch_labels = batch_labels.to(dev, non_blocking=True).long()
scores = net(forest)
loss = loss_fn(scores, batch_labels)
loss.backward()
optimizer.step()
end = timer()
net.eval()
with torch.no_grad():
for i, (batch_forest, batch_labels) in enumerate(tqdm(val_loader)):
forest = [level.to(device=dev, dtype=torch.long, non_blocking=True) for level in batch_forest]
batch_labels = batch_labels.to(dev, non_blocking=True)
scores = net(forest)
y_pred = scores.cpu().data.numpy().argmax(axis=1)
y_true = batch_labels.cpu().numpy()
Y_true += list(y_true)
Y_pred += list(y_pred)
f1 = f1_score(Y_true, Y_pred, average="micro")
print('Test F1 = {}'.format(f1))
print('Training time = {} seconds'.format(end - start))
def eval_acc(y_true, y_pred):
total = len(y_true)
correct = (y_true == y_pred).sum()
return correct / total
def main(_):
path = os.path.join(FLAGS.data_dir, FLAGS.dataset)
fanouts = list(map(lambda x: int(x), FLAGS.fanouts.split('x')))
if(FLAGS.dataset == 'reddit'):
train_comp_adj, test_comp_adj, feat_data, labels, train_ids, val_ids, test_ids = datasets.load_reddit(path)
train(feat_data, labels, train_comp_adj, test_comp_adj, train_ids, test_ids, fanouts)
elif(FLAGS.dataset == 'products'):
feat_data, labels, comp_adj, degrees, train_ids, val_ids, test_ids = datasets.load_ogbproducts(path)
train(feat_data, labels, comp_adj, comp_adj, train_ids, test_ids, fanouts)
elif(FLAGS.dataset == 'amazon'):
feat_data, labels, train_comp_adj, comp_adj, train_ids, val_ids, test_ids = datasets.load_amazon(path)
train(feat_data, labels, train_comp_adj, comp_adj, train_ids, test_ids, fanouts)
if __name__ == '__main__':
app.run(main)