-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLBM_MRT.py
209 lines (192 loc) · 5.69 KB
/
LBM_MRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#
"""
Start Date: 14 August 2017
@author: Isac Rajan
Single Sided Lid Driven Cavity using LBM MRT Scheme
Email: isacrajan@gmail.com
"""
import numpy as np
#No of grids in X and Y direction
NX = 100
NY = 100
#Defining the parameters
TSTEPS = 205
cx = np.array([0,1,0,-1,0,1,-1,-1,1])
cy = np.array([0,0,1,0,-1,1,1,-1,-1])
w = np.array([4./9,1./9,1./9,1./9,1./9,1./36,1./36,1./36,1./36])
uo = 0.1 #Lid Velocity
rhoo = 0.1
Re = 100 #Reynolds Number
nu = uo*NY/Re #Kinematic Viscosity
omega = 1.0/(3.0*nu + 0.5) #inverse of tau, as in formulation
#Initializing the arrays
u = np.zeros((NX,NY))
v = np.zeros((NX,NY))
ur = np.empty((NX,NY))
u_old = np.zeros((NX,NY))
v_old = np.zeros((NX,NY))
rho = rhoo * np.ones((NX,NY))
f = np.zeros((9,NX,NY))
feq = np.zeros((9,NX,NY))
m = np.empty((9,NX,NY))
meq = np.empty((9,NX,NY))
M = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1],
[-4, -1, -1, -1, -1, 2, 2, 2, 2],
[4, -2, -2, -2, -2, 1, 1, 1, 1],
[0, 1, 0, -1, 0, 1, -1, -1, 1],
[0, -2, 0, 2, 0, 1, -1, -1, 1],
[0, 0, 1, 0, -1, 1, 1, -1, -1],
[0, 0, -2, 0, 2, 1, 1, -1, -1],
[0, 1, -1, 1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, -1, 1, -1]]) #Transformation Matrix
Minv = np.linalg.inv(M) #Inverse of Transformation Matrix
S = np.diag([0,omega,omega,0,omega,0,omega,omega,omega]) #Relaxation Matrix
MinvS = np.empty((9,NX,NY))
#Initialization of Lid Velocity -- Top Lid
u[:,NY-1] = uo;
v[:,NY-1] = 0.0;
#Evaluating feq at t=0 & Initializing f
t1 = np.multiply(u,v)
for k in range(9):
t2 = np.add(np.multiply(u,cx[k]), np.multiply(v, cy[k]))
feq[k,:,:] = rho[:,:] * w[k] * (1.0 + 3.0*t2 + 4.5*t2*t2 - 1.50*t1)
f[k,:,:] = feq[k,:,:]
#Evaluating meq at t=0 & Initializing m
"""
for k in range(9):
if k == 0:
meq[k,:,:] = rho[:,:]
elif k == 1:
meq[k,:,:] = -2*rho[:,:] + 3*(np.add(np.multiply(u,u),np.multiply(v,v)))
elif k == 2:
meq[k,:,:] = rho[:,:] - 3*(np.add(np.multiply(u,u),np.multiply(v,v)))
elif k == 3:
meq[k,:,:] = np.multiply(rho,u)
elif k == 4:
meq[k,:,:] = -u[:,:]
elif k == 5:
meq[k,:,:] = np.multiply(rho,v)
elif k == 6:
meq[k,:,:] = -v[:,:]
elif k == 7:
meq[k,:,:] = np.multiply(u,u) - np.multiply(v,v)
elif k == 8:
meq[k,:,:] = np.multiply(u,v)
"""
#Product of Minv & S
MinvS = np.matmul(Minv, S)
#MAIN LOOP STARTS--------------------
for t in range(1, TSTEPS):
if t%50 == 0:
print("Timestep = %d" %(t))
#ASSIGNMENT OF OLD VECTORS
u_old[:,:] = u[:,:]
v_old[:,:] = v[:,:]
#COLLISION
#1. Calculating feq - Used in boundary conditions, I think
"""
t1 = np.multiply(u,v)
for k in range(9):
t2 = np.add(np.multiply(u,cx[k]), np.multiply(v, cy[k]))
feq[k,:,:] = rho[:,:] * w[k] * (1.0 + 3.0*t2 + 4.5*t2*t2 - 1.50*t1)
"""
#2. Calculating m = Mf
for i in range(0,NX):
for j in range(0,NY):
m[:,i,j] = np.matmul(M,f[:,i,j])
#3. Calculating meq = []
for k in range(9):
if k == 0:
meq[k,:,:] = rho[:,:]
elif k == 1:
meq[k,:,:] = -2*rho[:,:] + 3*(np.add(np.multiply(u,u),np.multiply(v,v)))
elif k == 2:
meq[k,:,:] = rho[:,:] - 3*(np.add(np.multiply(u,u),np.multiply(v,v)))
elif k == 3:
meq[k,:,:] = np.multiply(rho,u)
elif k == 4:
meq[k,:,:] = -u[:,:]
elif k == 5:
meq[k,:,:] = np.multiply(rho,v)
elif k == 6:
meq[k,:,:] = -v[:,:]
elif k == 7:
meq[k,:,:] = np.multiply(u,u) - np.multiply(v,v)
elif k == 8:
meq[k,:,:] = np.multiply(u,v)
#4. Collision equation to find fe
for i in range(0,NX):
for j in range(0,NY):
f[:,i,j] = f[:,i,j] - np.matmul(MinvS, (m[:,i,j] - meq[:,i,j]))
#STREAMING
for j in range(NY):
for i in range(NX-1, 0):
f[1,i,j]=f[1,i-1,j]
for i in range(0, NX-1):
f[3,i,j]=f[3,i+1,j]
for j in range(NY-1, 0):
for i in range(NX):
f[2,i,j]=f[2,i,j-1]
for i in range(NX-1, 0):
f[5,i,j]=f[5,i-1,j-1]
for i in range(NX-1):
f[6,i,j]=f[6,i+1,j-1]
for j in range(NY-1):
for i in range(NX):
f[4,i,j]=f[4,i,j+1]
for i in range(NX-1):
f[7,i,j]=f[7,i+1,j+1]
for i in range(NX-1,0):
f[8,i,j]=f[8,i-1,j+1]
#BOUNDARY CONDITIONS
#Bounce back on west boundary
f[1,0,:]=f[3,0,:]
f[5,0,:]=f[7,0,:]
f[8,0,:]=f[6,0,:]
#Bounce back on east boundary
f[3,NX-1,:]=f[1,NX-1,:]
f[7,NX-1,:]=f[5,NX-1,:]
f[6,NX-1,:]=f[8,NX-1,:]
#Bounce back on south boundary
f[2,0:NX-2,0]=f[4,0:NX-2,0]
f[5,0:NX-2,0]=f[7,0:NX-2,0]
f[6,0:NX-2,0]=f[8,0:NX-2,0]
#Moving Lid, North Boundary
#Setting the Lid distribution to eqb
for k in range(9):
f[k,:,NY-1] = feq[k,:,NY-1]
#COMPUTE FIELDS - rho, u, v
ssum=0.0
usum=0.0
vsum=0.0
for k in range(9):
ssum += f[k][:][:]
usum += f[k][:][:]*cx[k]
vsum += f[k][:][:]*cy[k]
rho = ssum
u = usum/rho
v = vsum/rho
#COMPUTE ERROR
err1 = err = err2 = 0.0
ur[:][:] = np.add(np.multiply(u,u), np.multiply(v,v))
for i in range(NX):
for j in range(NY):
err1 +=(u[i][j]-u_old[i][j])*(u[i][j]-u_old[i][j]) + (v[i][j]-v_old[i][j])*(v[i][j]-v_old[i][j])
err2 += ur[i][j]
err = np.sqrt(err1)/np.sqrt(err2)
if t%50 == 0:
print("The error is %f\n" %(err))
#INTIALIZE LID
u[:][NY-1] = uo
v[:][NY-1] = 0.0
#WRITING TO A FILE
if t%200 == 0:
result = open("XYuvV_py.dat", "w")
result.write("VARIABLES=\"X\",\"Y\",\"U\",\"V\",\"VMag\"\n")
result.write("ZONE F=POINT\n")
result.write("I={}, J={}\n".format(NX, NY))
for j in range(NY):
for i in range(NX):
#result.write(i*1.0/NX,"\t",j*1.0/NY, "\t", u[i][j]/uo, "\t",v[i][j]/uo, "\t", ur[i][j]/uo,"\n")
result.write("{}\t{}\t{}\t{}\t{}\n".format((i*1.0/NX), (j*1.0/NY), (u[i][j]/uo), (v[i][j]/uo), (ur[i][j]/uo)))
result.close();