-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisionBigShake.py
398 lines (257 loc) · 10 KB
/
VisionBigShake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import cv2
import numpy as np
import os
import socket
import time
import math
def nothing(x):
pass
def vision_set():
# while True:
global mapx1, mapy1, mask1, cap1
global centerX, centerY
# global ball_cam0, ball_cam1
ball_cam1 = np.array([0, 0])
ret_1, frame_1 = cap1.read()
cv2.imshow('src_1', frame_1)
src_1 = cv2.remap(frame_1, mapx1, mapy1, cv2.INTER_LINEAR)
src_1 = cv2.copyTo(src_1, mask1)
#show current 3D points through mouse click
# cv2.imshow('current_point0', src_0)
# cv2.imshow('current_point1', src_1)
# cv2.setMouseCallback('current_point0', print_3D, 0)
# cv2.setMouseCallback('current_point1', print_3D, 1)
src_hsv_1 = cv2.cvtColor(src_1, cv2.COLOR_BGR2HSV)
#check for 2D matrix
def checkPoints(event, x, y, flags, param) :
if event == cv2.EVENT_LBUTTONDOWN :
print('current (x, y) : ', x, y)
# cv2.setMouseCallback('src_0', checkPoints)
# Detecting Color Setting
# dst_1 = cv2.inRange(src_hsv_1, (hmin_1, smin_1, vmin_1), (hmax_1, smax_1, vmax_1))
# cv2.imshow('dst_0', dst_0)
# cv2.imshow('dst_1', dst_1)
# MORPH 함수 이용하여 정확도 향상(Value Optimization)
kernel = np.ones((3, 3), np.uint8)
# dst_0 = cv2.morphologyEx(dst_0, cv2.MORPH_OPEN, kernel)
# dst_0 = cv2.morphologyEx(dst_0, cv2.MORPH_CLOSE, kernel)
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, kernel)
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, kernel)
# 마스크 이미지로 원본 이미지에서 범위값에 해당되는 영상 부분을 획득
dst_1 = cv2.inRange(src_hsv_1, (hmin_1, smin_1, vmin_1), (hmax_1, smax_1, vmax_1))
img_result_1 = cv2.bitwise_and(src_1, src_1, mask=dst_1)
numOfLabels_1, img_label_1, stats_1, centroids_1 = cv2.connectedComponentsWithStats(dst_1)
# centroids==무게중심 좌표(x,y)
for idx, centroid in enumerate(centroids_1):
if stats_1[idx][0] == 0 and stats_1[idx][1] == 0:
continue
if np.any(np.isnan(centroid)):
continue
x, y, width, height, area = stats_1[idx]
if 100 < area < 5000:
# 일정 범위 이상 & 이하인 부분에 대해서만 centroids 값 반환 (depends on the camera setting)
# cv2.circle(src_1, (int(centerX), int(centerY)), 10, (0, 0, 255), 10)
cv2.rectangle(src_1, (x, y), (x + width, y + height), (0, 0, 255))
ball_cam1 = np.array([centroid[0], centroid[1]], dtype=float)
centerX = ball_cam1[0]
centerY = ball_cam1[1]
# Display
# cv2.imshow('dst_0', dst_0)
# cv2.imshow('img_result_0', img_result_0)
cv2.imshow('src_1', src_1)
# cv2.imshow('dst_1', dst_1)
# cv2.imshow('img_result_1', img_result_1)
print('')
print('-----------------------------------------')
print(ball_cam1)
def predict(tm):
global ball_array
global centerX, centerY
global temp_0
global slope, slope_temp, slope_send #only 'slope' is used
global i, j
global impact
global pcnt
global speed
if ball_array[0][0] != centerX and ball_array[0][1] != centerY and centerY > 150:
ball_array.append([centerX,centerY])
ball_array.pop(0)
if impact==1 and cnt > 0 and ball_array[1][1]-ball_array[0][1]<0:
print("impact detection succeeded")
print("slope: ", slope)
print("center_x", centerX)
print("center_y", centerY)
#predicted x position
udp_socket.sendto(str(1).encode(), (ip_address, 9999))
# time.sleep(0.03)
ball_array =[[0,0],[0,0]]
# ---------------------------------------------------y_p calc-----------------------------------------------------------
# ----------------------------------------------------Step Calc---------------------------------------------------------
# if 0 < abs(slope) < 0.04:
# step = 1
# elif 0.04 < abs(slope) < 0.08:
# step = 2
# elif 0.08 < abs(slope) < 0.12:
# step = 3
# elif 0.12 < abs(slope) < 0.16:
# step = 4
# else:
# step = 5
# if -470 <= y_p < -200:
# y_p = -380
# elif -200 <= y_p < 200:
# y_p = -25
# elif 200 <= y_p <= 470:
# y_p = 380
# -----------------------------------------------------print------------------------------------------------------------
# print('predict_result')
# print("x_p :",x_p)
# print(slope)
# print((5000+int(-y_p))*10000+step*1000+0)
# ---------------------------------------------------Data Send----------------------------------------------------------
#data = str(x_p) #1000 부분을 조절해서, y를 맞춰야함
# data=str(0) #fix well for good clear x_p
#if impact == 1 and cnt > 0:
# udp_socket.sendto(data.encode(), (ip_address, 9999))
# udp_socket.sendto(str(impact).encode(), (ip_address, 3333)) # 강민석이 단거임
#
# udp_socket.sendto(str(0).encode(), (ip_address, 3333))
# elif temp_0 == 1 and ball_3D[1] > 11.5:
# temp_0 = 0
#print the text sparsely so that research can read the log simultaneously.
def reset_params():
global curr_p, prev_p
global temp_0
global ball_array
global speed
impact = 0
ball_array = [[0,0],[0,0]]
temp_0 = 1
curr_p=[0,0]
prev_p=[0,0]
data_reset = str(0)
speed=0
udp_socket.sendto(data_reset.encode(), (ip_address, 9999))
print('reset!')
if __name__ == '__main__':
udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
os.chdir('C:/Users/User/Desktop/Dev/tabletennis_robot')
# -----------------------------------------------초기값 UDP Send---------------------------------------------------------
ip_address="172.17.27.22"
data_zero = str(0)
udp_socket.sendto(data_zero.encode(), (ip_address, 9999))
data_impact = str(0)
udp_socket.sendto(data_impact.encode(), (ip_address, 3333))
# Set Global Variables
global hmin_1, hmax_1, smin_1, smax_1, vmin_1, vmax_1
global impact
global centerX, centerY
global cnt, pcnt
#set initial color range
lower_color = [0, 87, 89]
upper_color = [63, 255, 255]
[hmin_1, smin_1, vmin_1]=lower_color
[hmax_1, smax_1, vmax_1]=upper_color
temp_0 = 1
y_p = 0
slope = 0
slope_temp = 0
centerY=0
centerX=0
ball_array = [[0,0],[0,0]]
impact=0
pcnt = 0
cnt = 2
speed=0
i_main = 0
h, w = np.array([720, 1280])
# Set Camera Matrix
#R0 = np.linalg.inv(np.array([[-0.6403, -0.6730, -1.4113],
# [-0.5477, -0.5929, -1.4882],
# [-0.4374, -0.4086 , -1.4703]]))
r1 = np.array([-0.06858176, 1.389907, 2.78486924])
R1, _ = cv2.Rodrigues(r1)
T1 = np.array([6.27299391, 4.01877434, 24.29342169])
# Translation Matrix between each cam & World Coord
# Focal length of each cam
cam1_f = np.array([419.4296, 384.6875])
# Principle Point of each cam
cam1_c = np.array([647.8114, 358.0928])
# Intrinsics Matrix
cam1_int = np.array([[917.90762504, 0., 666.38254799], [0., 925.16342156, 383.26190772], [0., 0., 1.]])
mtx1 = cam1_int
#hstack: 가로로 두 array 붙이는 연산
dist1 = np.array([0.28723829, -0.65396653, 0.00228012, -0.00093557, 0.40185624])
print('intrinsics Matrix')
print("")
print(mtx1)
print(dist1)
# Calibration for new camera matrix
newcameraMtx1, roi1 = cv2.getOptimalNewCameraMatrix(cam1_int, dist1, (w, h), 1, (w, h))
print(newcameraMtx1)
print(roi1)
# # define pose 1
# T1 = np.array([0,0,2.])
RT1 = np.zeros((3, 4))
RT1[:3, :3] = R1
RT1[:3, 3] = T1
P1 = np.dot(newcameraMtx1, RT1)
print(P1)
mapx1, mapy1 = cv2.initUndistortRectifyMap(mtx1, dist1, None, newcameraMtx1, (w, h), 5)
# CAP_DSHOW 가 그냥 Index Calling에 비해 속도 훨씬 빠름
# p1 = Process(target=vision_set())
# p2 = Process(target=predict())
cap1 = cv2.VideoCapture(cv2.CAP_DSHOW + 0)
cap1.isOpened()
# Camera0_Setting
cap1.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap1.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
w_0 = int(cap1.get(cv2.CAP_PROP_FRAME_WIDTH))
h_0 = int(cap1.get(cv2.CAP_PROP_FRAME_HEIGHT))
print("the width and height of the CAM0: ", w_0, h_0)
# Camera1_Setting
cap1.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap1.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
cap1.set(cv2.CAP_PROP_FRAME_COUNT, 60)
cap1.set(cv2.CAP_PROP_POS_MSEC, 11)
cap1.set(cv2.CAP_PROP_AUTOFOCUS, 0)
cap1.set(cv2.CAP_PROP_FPS, 90)
cap1.set(cv2.CAP_PROP_EXPOSURE, -7)
# cap1.set(cv2.CAP_PROP_BRIGHTNESS, 500)
print("the cap1 fps: ", cap1.get(cv2.CAP_PROP_FPS))
mask1 = cv2.imread('cam0_mask_cali_v2.jpg', cv2.IMREAD_GRAYSCALE)
# cv2.namedWindow('src')
# cv2.namedWindow('dst_0') #dst_0 is the mask(gray scale) of the ball
# cv2.namedWindow('dst_1')
# 연산 시간 측정
tm = cv2.TickMeter()
# the standard for printing current state
cnt = 2
pcnt = 0
while True:
tm.reset()
tm.start()
vision_set()
if cv2.waitKey(1) & 0xFF == ord('r'):
reset_params()
elif cv2.waitKey(1) & 0xFF == 27:
print('break!')
break
if centerY < 200 and [centerX, centerY]!=[0,0] and ball_array[1][1]-ball_array[0][1]<0: #maybe std at which the robot should impact
impact = 1
cnt = cnt - 1
elif centerY > 150 and ball_array[1][1]-ball_array[0][1]>0:
impact = 0
cnt = 2
#parameter tm is for calculating the speed of the ball
predict(tm)
print("centerX: ", centerX)
print("centerY: ", centerY)
print("impact: ", impact)
print("cnt : ", cnt)
# if print_std%print_now==0:
# print("temp_0: (ignored)", temp_0)
tm.stop()
print('Calc time : {}ms.'.format(tm.getTimeMilli()))
cv2.destroyAllWindows()
cap1.release()