-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheq_of_motion_euclideantime.py
155 lines (134 loc) · 4.68 KB
/
eq_of_motion_euclideantime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#A. WIPF - PATH INTEGRALS
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
from numba import njit
N = 100
w_0 = 1
m = 1
a = np.linspace(0.1, 0.5, 100)
T = N/a
#boundary coniditions, if in real time sin(wt) at initial and final times is zero (Dirichelet boundary conditions), in imaginary time
#x_i=x_{-1}=1 and x_f=x_N=(approxiamtely) 0 (for long total time evolution T), B (the functions values and values_imp) need to be defined accordingly
#xi2 is x_{-2}
#xi is x_{-1}
#xf is x_N
#xf2 is x_{N+1}
#define matrix of coefficients of unimproved action eq of motion
#(x_j+1 + x_j-1) - (2 + a^2*w_0^2)*x_j = 0
@njit
def coeff_matrix(a):
A = np.zeros((N, N))
for j in range(N):
jm = (j-1)
jp = (j+1)
if jm >= 0:
A[jm][j] = 1
A[j][j] = -(2 + a**2*w_0**2)
if jp < N:
A[jp][j] = 1
return A
#define matrix of coefficients of improved action eq of motion
#-(1/12)(x_j-2 + x_j+2) + (4/3)(x_j-1 x_j+1) - (5/2 + w_0^2*a^2)*x_j = 0
@njit
def coeff_matrix_imp(a):
A = np.zeros((N, N))
for j in range(N):
jm = (j-1)
jp = (j+1)
jm2 = (j-2)
jp2 = (j+2)
if jm2 >= 0:
A[jm2][j] = -1/12
if jm >= 0:
A[jm][j] = 4/3
A[j][j] = -(5/2 + a**2*w_0**2)
if jp < N:
A[jp][j] = 4/3
if jp2 < N:
A[jp2][j] = -1/12
return A
@njit
def coeff_matrix_imp_transformed(a):
A = np.zeros((N, N))
for j in range(N):
jm = (j-1)
jp = (j+1)
if jm >= 0:
A[jm][j] = 1
A[j][j] = -(2 + (a*w_0)**2*(1+(a*w_0)**2/12))
if jp < N:
A[jp][j] = 1
return A
def exp(t, A, w, phi):
return A*np.exp(-w*t+phi)
@njit
def values(a, xi, xf):
B=np.empty(N)
for i in range(N):
if i == 0:
B[i] = -xi
elif i == N-1:
B[i] = -xf
else:
B[i] = 0
return B
def values_imp(a, xi, xf, xi2, xf2):
B=np.empty(N)
for i in range(N):
if i == 0:
B[i] = (1/12)*xi2-(4/3)*xi
elif i == 1:
B[i] = xi*(1/12)
elif i == N-2:
B[i] = xf*(1/12)
elif i == N-1:
B[i] = (1/12)*xf2-(4/3)*xf
else:
B[i] = 0
return B
ws2 = np.empty(len(a))
ws2_imp = np.empty(len(a))
ws2_imp_transformed = np.empty(len(a))
for i in range(len(a)):
A = coeff_matrix(a[i])
A_imp = coeff_matrix_imp(a[i])
A_imp_transormed = coeff_matrix_imp_transformed(a[i])
B = values(a[i], xi= np.exp(0), xf= np.exp(-T[i]))
B_imp = values_imp(a[i], xi= np.exp(0), xf= np.exp(-T[i]), xi2= np.exp(-(-a[i])), xf2= np.exp(-T[i]+a[i]))
X = np.linalg.solve(A, B)
X_imp = np.linalg.solve(A_imp, B_imp)
X_imp_transformed = np.linalg.solve(A_imp_transormed, B)
t = np.arange(0, N, 1)*a[i]
#plt.scatter(t, X, label=f'a={a[i]}') #show unimproved action solution
#plt.scatter(t, X_imp, label=f'a={a[i]}') #show improved action solution
#plt.scatter(t, X_imp_transformed, label=f'a={a[i]}')
#plt.legend()
param, cov = optimize.curve_fit(exp, t, X, p0=(0.1, 1, 0))
param_imp, cov_imp = optimize.curve_fit(exp, t, X_imp, p0=(0.1, 1, 0))
param_imp_transformed, cov_imp_transformed = optimize.curve_fit(exp, t, X_imp_transformed, p0=(0.1, 1, 0))
fit = [exp(x, param[0], param[1], param[2]) for x in t] #show unimproved action solution fit
fit_imp = [exp(x, param_imp[0], param_imp[1], param_imp[2]) for x in t] #show improved action solution fit
fit_imp_transformed = [exp(x, param_imp_transformed[0], param_imp_transformed[1], param_imp_transformed[2]) for x in t]
#plt.plot(t, fit, label=f'a={a[i]}')
#plt.plot(t, fit_imp, label=f'a={a[i]}')
#plt.plot(t, fit_imp_transformed, label=f'a={a[i]}')
ws2[i] = param[1]**2
ws2_imp[i] = param_imp[1]**2
ws2_imp_transformed[i] = param_imp_transformed[1]**2
#plt.show()
#expected behaviour for unimproved action
expo = [w_0**2*(1-((q*w_0)**2)/12) for q in a]
expo_imp = [w_0**2*(1+((q*w_0)**4)/90) for q in a]
expo_imp_transformed = [w_0**2*(1-((q*w_0)**4)/360) for q in a]
plt.title(f'N={N}, $\omega_0$={w_0}, m={m}')
plt.scatter(a, ws2, s=10, label='frequency')
plt.plot(a, expo, label='expected')
plt.scatter(a, ws2_imp, s=10, label='frequency improved')
plt.plot(a, expo_imp, label='expected improved')
plt.scatter(a, ws2_imp_transformed, s=10, label='frequency improved no ghost')
plt.plot(a, expo_imp_transformed, label='expected improved transformed')
plt.xlabel('lattice spacing')
plt.ylabel('$\omega^2$')
plt.legend()
plt.show()