-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_Fair_clustering.sh
executable file
·77 lines (71 loc) · 3.26 KB
/
evaluate_Fair_clustering.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/bin/bash
c_v_l=False # Set true for clusters vs lambda figures in Synthetic or Synthetic-unequal dataset
f_v_E=False # Set true to check the fairness error vs Discrete clustering energy plots in a lambda range. Note that,
# In this case also set --lmd_tune to True to have the default range.
conv=False # Set true to see if the algorithm converges.
lmd_tune=False
dataset=Synthetic-unequal
cluster_option=ncut
lmd=10
python test_fair_clustering.py -d $dataset \
--cluster_option $cluster_option \
--lmbda-tune $lmd_tune \
--lmbda $lmd \
--L 1.0
--plot_option_clusters_vs_lambda $c_v_l \
--plot_option_fairness_vs_clusterE $f_v_E \
--plot_option_convergence $conv
#dataset=Bank
#cluster_option=ncut
#lmd=40
#python test_fair_clustering.py -d $dataset \
# --cluster_option $cluster_option \
# --lmbda-tune $lmd_tune \
# --lmbda $lmd \
# --L 1.0 \
# --plot_option_clusters_vs_lambda $c_v_l \
# --plot_option_fairness_vs_clusterE $f_v_E \
# --plot_option_convergence $conv
# dataset=Synthetic-unequal
# cluster_option=kmeans
# lmd=60.0
# python test_fair_clustering.py -d $dataset \
# --cluster_option $cluster_option \
# --lmbda-tune $lmd_tune \
# --lmbda $lmd \
# --plot_option_clusters_vs_lambda $c_v_l \
# --plot_option_fairness_vs_clusterE $f_v_E \
# --plot_option_convergence $conv
#Synthetic
#dataset=Synthetic
#cluster_option=kmeans
#lmd=60.0
#python test_fair_clustering.py -d $dataset \
# --cluster_option $cluster_option \
# --lmbda-tune $lmd_tune \
# --lmbda $lmd \
# --plot_option_clusters_vs_lambda $c_v_l \
# --plot_option_fairness_vs_clusterE $f_v_E \
# --plot_option_convergence $conv
##Census II
#dataset=CensusII
#cluster_option=kmeans
#lmd=10000
#python test_fair_clustering.py -d $dataset \
# --cluster_option $cluster_option \
# --lmbda-tune $lmd_tune \
# --lmbda $lmd \
# --plot_option_clusters_vs_lambda $c_v_l \
# --plot_option_fairness_vs_clusterE $f_v_E \
# --plot_option_convergence $conv
#dataset=Adult
#cluster_option=ncut
#lmd=10
#python test_fair_clustering.py -d $dataset \
# --cluster_option $cluster_option \
# --lmbda-tune $lmd_tune \
# --lmbda $lmd \
# --L 1.0 \
# --plot_option_clusters_vs_lambda $c_v_l \
# --plot_option_fairness_vs_clusterE $f_v_E \
# --plot_option_convergence $conv