-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDemo_PennTreeBank.py
158 lines (130 loc) · 5.59 KB
/
Demo_PennTreeBank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import time
import numpy as np
import pickle
from VISolver.Domains.PennTreeBank import PennTreeBank, PTBProj, get_y0
from VISolver.Domains.PTB_Reader import ptb_raw_data
from VISolver.Domains.CBOW import CBOW
from VISolver.Solvers.Euler import Euler
from VISolver.Solvers.HeunEuler import HeunEuler
from VISolver.Solvers.CashKarp import CashKarp
from VISolver.Projection import BoxProjection
from VISolver.Solver import Solve
from VISolver.Options import (
DescentOptions, Miscellaneous, Reporting, Termination, Initialization)
from VISolver.Log import PrintSimResults, PrintSimStats
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist, squareform
from IPython import embed
def Demo():
# __PENN_TREE_BANK____#################################################
# Load Data
# seq = np.arange(1000)
train, valid, test, id_to_word, vocab = ptb_raw_data('/Users/imgemp/Desktop/Data/simple-examples/data/')
words, given_embeddings = pickle.load(open('/Users/imgemp/Desktop/Data/polyglot-en.pkl', 'rb'), encoding='latin1')
words_low = [word.lower() for word in words]
word_to_id = dict(zip(words_low,range(len(words))))
word_to_id['<eos>'] = word_to_id['</s>']
y0 = get_y0(train,vocab)
EDim = 5
fix_embedding = False
learn_embedding = True
if fix_embedding:
EDim = given_embeddings.shape[1]
learn_embedding = False
# Define Domain
Domain = PennTreeBank(seq=train,y0=None,EDim=EDim,batch_size=100,
learn_embedding=learn_embedding,ord=1)
# Set Method
P = PTBProj(Domain.EDim)
# Method = Euler(Domain=Domain,FixStep=True,P=P)
Method = HeunEuler(Domain=Domain,P=P,Delta0=1e-4,MinStep=-3.,MaxStep=0.)
# Method = CashKarp(Domain=Domain,P=P,Delta0=1e-1,MinStep=-5.,MaxStep=0.)
# Set Options
Term = Termination(MaxIter=10000)
Repo = Reporting(Interval=10,Requests=[Domain.Error,Domain.PercCorrect,Domain.Perplexity,'Step']) #,
# 'Step', 'F Evaluations',
# 'Projections','Data'])
Misc = Miscellaneous()
Init = Initialization(Step=-1e-3)
Options = DescentOptions(Init,Term,Repo,Misc)
# Initialize Starting Point
if fix_embedding:
missed = 0
params = np.random.rand(Domain.param_len)
avg_norm = np.linalg.norm(given_embeddings,axis=1).mean()
embeddings = []
for i in range(vocab):
word = id_to_word[i]
if word in word_to_id:
embedding = given_embeddings[word_to_id[word]]
else:
missed += 1
embedding = np.random.rand(Domain.EDim)
embedding *= avg_norm/np.linalg.norm(embedding)
embeddings += [embedding]
polyglot_embeddings = np.hstack(embeddings)
Start = np.hstack((params,polyglot_embeddings))
print(np.linalg.norm(polyglot_embeddings))
print('Missing %d matches in polyglot dictionary -> given random embeddings.' % missed)
else:
# params = np.random.rand(Domain.param_len)*10
# embeddings = np.random.rand(EDim*vocab)*.1
# Start = np.hstack((params,embeddings))
# assert Start.shape[0] == Domain.Dim
Start = np.random.rand(Domain.Dim)
Start = P.P(Start)
# Compute Initial Error
print('Initial training error: %g' % Domain.Error(Start))
print('Initial perplexity: %g' % Domain.Perplexity(Start))
print('Initial percent correct: %g' % Domain.PercCorrect(Start))
# Print Stats
PrintSimStats(Domain,Method,Options)
# Start Solver
tic = time.time()
PTB_Results = Solve(Start,Method,Domain,Options)
toc = time.time() - tic
# Print Results
PrintSimResults(Options,PTB_Results,Method,toc)
# Plot Results
err = np.asarray(PTB_Results.PermStorage[Domain.Error])
pc = np.asarray(PTB_Results.PermStorage[Domain.PercCorrect])
perp = np.asarray(PTB_Results.PermStorage[Domain.Perplexity])
steps = np.asarray(PTB_Results.PermStorage['Step'])
t = np.arange(0,len(steps)*Repo.Interval,Repo.Interval)
fig = plt.figure()
ax = fig.add_subplot(411)
ax.semilogy(t,err)
ax.set_ylabel('Training Error')
ax.set_title('Penn Tree Bank Training Evaluation')
ax = fig.add_subplot(412)
ax.semilogy(t,perp)
ax.set_ylabel('Perplexity')
ax = fig.add_subplot(413)
ax.plot(t,pc)
ax.set_ylabel('Percent Correct')
ax = fig.add_subplot(414)
ax.plot(t,steps)
ax.set_ylabel('Step Size')
ax.set_xlabel('Iterations (k)')
plt.savefig('PTB')
params_embeddings = np.asarray(PTB_Results.TempStorage['Data']).squeeze()
params, embeddings = np.split(params_embeddings,[Domain.param_len])
embeddings_split = np.split(embeddings,vocab)
dists_comp = pdist(np.asarray(embeddings_split))
dists_min = np.min(dists_comp)
dists_max = np.max(dists_comp)
dists = squareform(dists_comp)
dists2 = np.asarray([np.linalg.norm(e) for e in embeddings_split])
print('pairwise dists',np.mean(dists),dists_min,dists_max)
print('embedding norms',np.mean(dists2),np.min(dists2),np.max(dists2))
print('params',np.mean(params),np.min(np.abs(params)),np.max(np.abs(params)))
# http://sebastianruder.com/word-embeddings-1/index.html#continuousbagofwordscbow
# Continuous-Bag-Of-Words (CBOW)
# Write code to add up vectors for samples (new domain file)
# Define Domain
# Domain = CBOW(seq=train,EDim=64,batch_size=1000)
# print(Domain.Error(polyglot_embeddings))
# print(Domain.PercCorrect(polyglot_embeddings))
# print(Domain.Perplexity(polyglot_embeddings))
if __name__ == '__main__':
Demo()