-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDemo_OMO_MLN.py
297 lines (235 loc) · 9.14 KB
/
Demo_OMO_MLN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import time
import numpy as np
from scipy.sparse.linalg import svds
from VISolver.Utilities import approx_jacobian
from VISolver.Domains.SOI import SOI, CreateRandomNetwork
from VISolver.Domains.AverageDomains import AverageDomains
from VISolver.Domains.ContourIntegral import ContourIntegral, LineContour
from VISolver.Solvers.HeunEuler import HeunEuler
from VISolver.Solvers.HeunEuler_PhaseSpace import HeunEuler_PhaseSpace
from VISolver.Projection import BoxProjection
from VISolver.Solver import Solve
from VISolver.Options import (
DescentOptions, Miscellaneous, Reporting, Termination, Initialization)
from VISolver.Log import PrintSimResults, PrintSimStats
import matplotlib.pyplot as plt
from IPython import embed
def Demo():
#__SERVICE_ORIENTED_INTERNET__##############################################
N = 10 # number of possible maps
T = 1000 # number of time steps
eta = 1e-3 # learning rate
print('Creating Domains')
# Define Domains and Compute Equilbria
Domains = []
X_Stars = []
CurlBounds = []
n = 0
while len(Domains) < N:
# Create Domain
Network = CreateRandomNetwork(m=3,n=2,o=2,seed=None)
Domain = SOI(Network=Network,alpha=2)
# Initialize Starting Point
Start = np.zeros(Domain.Dim)
# Assert PD
J = approx_jacobian(Domain.F,Start)
eigs = np.linalg.eigvals(J+J.T)
if not np.all(eigs > 0):
continue
_J = approx_jacobian(Domain.F,Start+0.5)
assert np.allclose(J,_J,atol=1e-5) # assert J is constant (unique for SOI)
# Record Domain
Domains += [Domain]
# Calculate Initial Gap
gap_0 = Domain.gap_rplus(Start)
# Calculate Curl Bound
CurlBounds += [np.sqrt(18)*svds(J,k=1,which='LM',return_singular_vectors=False).item()]
# Set Method
Method = HeunEuler(Domain=Domain,P=BoxProjection(lo=0),Delta0=1e-3)
# Set Options
Init = Initialization(Step=-1e-10)
Term = Termination(MaxIter=25000,Tols=[(Domain.gap_rplus,1e-6*gap_0)])
Repo = Reporting(Requests=[Domain.gap_rplus])
Misc = Miscellaneous()
Options = DescentOptions(Init,Term,Repo,Misc)
# Print Stats
PrintSimStats(Domain,Method,Options)
# Start Solver
tic = time.time()
SOI_Results = Solve(Start,Method,Domain,Options)
toc = time.time() - tic
# Print Results
PrintSimResults(Options,SOI_Results,Method,toc)
# Record X_Star
X_Star = SOI_Results.TempStorage['Data'][-1]
X_Stars += [X_Star]
n += 1
X_Stars = np.asarray(X_Stars)
print('Starting Online Learning')
# Set First Prediction
X = np.zeros(X_Stars.shape[1])
# Select First Domain
idx = np.random.choice(len(Domains))
# Domain Sequence
idx_seq = []
X_seq = []
F_seq = []
ts = range(T)
for t in ts:
print('t = '+str(t),end='\r')
# record prediction
X_seq += [X]
# record domain
idx_seq += [idx]
# retrieve domain
Domain = Domains[idx]
# record F
FX = Domain.F(X)
F_seq += [FX]
# update prediction
X = BoxProjection(lo=0).P(X,-eta,FX)
# update domain
idx = np.random.choice(len(Domains))
print('Computing Optimal Strategy')
weights = np.bincount(idx_seq,minlength=len(Domains))/len(idx_seq)
print('Weights: ',weights)
# Compute Equilibrium of Average Domain
Domain = AverageDomains(Domains,weights=weights)
# Set Method
Method = HeunEuler_PhaseSpace(Domain=Domain,P=BoxProjection(lo=0),Delta0=1e-5)
# Initialize Starting Point
Start = np.zeros(Domain.Dim)
# Assert PSD - sum of PSD is PSD doesn't hurt to check
J = approx_jacobian(Domain.F,Start)
eigs = np.linalg.eigvals(J+J.T)
assert np.all(eigs > 0)
sigma = min(eigs)
# Calculate Initial Gap
gap_0 = Domain.gap_rplus(Start)
# Set Options
Init = Initialization(Step=-1e-10)
Term = Termination(MaxIter=25000,Tols=[(Domain.gap_rplus,1e-10*gap_0)])
Repo = Reporting(Requests=[Domain.gap_rplus])
Misc = Miscellaneous()
Options = DescentOptions(Init,Term,Repo,Misc)
# Print Stats
PrintSimStats(Domain,Method,Options)
# Start Solver
tic = time.time()
SOI_Results = Solve(Start,Method,Domain,Options)
toc = time.time() - tic
# Print Results
PrintSimResults(Options,SOI_Results,Method,toc)
print('Computing Regrets')
# Record X_Opt
X_Opt = SOI_Results.TempStorage['Data'][-1]
# Record constants for bounds
L = np.sqrt(np.mean(np.linalg.norm(F_seq,axis=1)**2.))
B = np.linalg.norm(X_Opt)
eta_opt = B/(L*np.sqrt(2*T))
bound_opt = B*L*np.sqrt(2*T)
reg_bound = (B**2)/(2*eta) + eta*T*L**2
opt_distances = []
equi_distances = []
regret_standards = []
regret_news = []
Fnorms = []
stokes = []
areas = []
ts = range(T)
for t in ts:
print('t = '+str(t),end='\r')
idx = idx_seq[t]
X = X_seq[t]
# retrieve domain
Domain = Domains[idx]
# retrieve equilibrium / reference vector
if t > 0:
equi = X_seq[t-1]
else:
equi = np.zeros_like(X)
# calculate distance
opt_distances += [np.linalg.norm(X_Opt-X)]
equi_distances += [np.linalg.norm(equi-X)]
# calculate standard regret
ci_predict = ContourIntegral(Domain,LineContour(equi,X))
predict_loss = integral(ci_predict)
ci_opt = ContourIntegral(Domain,LineContour(equi,X_Opt))
predict_opt = integral(ci_opt)
regret_standards += [predict_loss - predict_opt]
# calculate new regret
ci_new = ContourIntegral(Domain,LineContour(X_Opt,X))
regret_news += [integral(ci_new)]
# calculate bound
area = herons(X_Opt,X,equi) # exact area
areas += [area]
stokes += [CurlBounds[idx]*area]
# stokes += [np.max(CurlBounds[idx]*regret_news[-1]/sigma,0)]
# calculate Fnorm
Fnorms += [np.linalg.norm(F_seq[t])]
ts_p1 = range(1,T+1)
opt_distances_avg = np.divide(np.cumsum(opt_distances),ts_p1)
equi_distances_avg = np.divide(np.cumsum(equi_distances),ts_p1)
regret_standards_avg = np.divide(np.cumsum(regret_standards),ts_p1)
regret_news_avg = np.divide(np.cumsum(regret_news),ts_p1)
areas_avg = np.divide(np.cumsum(areas),ts_p1)
stokes_avg = np.divide(np.cumsum(stokes),ts_p1)
Fnorms_avg = np.divide(np.cumsum(Fnorms),ts_p1)
np.savez_compressed('NoRegret_MLN2d.npz',opt_d_avg=opt_distances_avg,equi_d_avg=equi_distances_avg,
rs_avg=regret_standards_avg,rn_avg=regret_news_avg,stokes=stokes_avg)
plt.subplot(2, 1, 2)
plt.semilogy(ts, opt_distances_avg, 'k',label='Average Distance to Optimal')
plt.semilogy(ts, equi_distances_avg, 'r',label='Average Distance to Reference')
plt.semilogy(ts, areas_avg, 'g-', label='Area')
plt.semilogy(ts, Fnorms_avg, 'b-', label='Fnorms')
# plt.title('Demonstration of No-Regret on MLN')
plt.xlabel('Time Step')
plt.ylabel('Euclidean Distance')
# plt.legend()
lgd1 = plt.legend(bbox_to_anchor=(1.05, 1), loc=2)
plt.subplot(2, 1, 1)
plt.plot(ts, regret_standards_avg, 'r--o', markevery=T//20,
label=r'regret$_{s}$')
plt.plot(ts, regret_news_avg, 'b-', label=r'regret$_{n}$')
plt.fill_between(ts, regret_news_avg-stokes, regret_news_avg+stokes,
facecolor='c', alpha=0.2, zorder=5, label='Stokes Bound')
# plt.plot(ts, np.zeros_like(ts), 'w-', lw=1)
# plt.xlabel('Time Step')
plt.ylabel('Aggregate System-Wide Loss')
plt.xlim([0,T])
plt.ylim([-5000,5000])
# plt.legend(loc='lower right')
lgd2 = plt.legend(bbox_to_anchor=(1.05, 1), loc=2)
plt.title('Demonstration of No-Regret on MLN')
plt.savefig('NoRegret_MLN.pdf',format='pdf',additional_artists=[lgd1,lgd2],bbox_inches='tight')
sat = np.logical_or(regret_standards_avg >= regret_news_avg-stokes, regret_standards_avg <= regret_news_avg+stokes)
embed()
def infinity_loss(Domain,Start):
# Set Method
Method = HeunEuler(Domain=Domain,P=BoxProjection(lo=0),Delta0=1e-3)
# Calculate Initial Gap
gap_0 = Domain.gap_rplus(Start)
# Set Options
Init = Initialization(Step=-1e-10)
Term = Termination(MaxIter=25000,Tols=[(Domain.gap_rplus,1e-6*gap_0)],verbose=False)
Repo = Reporting(Requests=[Domain.gap_rplus,'Data',Domain.F])
Misc = Miscellaneous(Timer=False)
Options = DescentOptions(Init,Term,Repo,Misc)
# Start Solver
SOI_Results = Solve(Start,Method,Domain,Options)
# Record X_Star
Data = SOI_Results.PermStorage['Data']
dx = np.diff(Data,axis=0)
F = SOI_Results.PermStorage[Domain.F][:-1]
return -np.sum(F*dx)
def integral(Domain,N=100):
# crude approximation for now (Euler with constant step size)
trange = np.linspace(0,1,N,endpoint=False)
F = np.asarray([Domain.F(t) for t in trange])
return np.sum(F)/N
def herons(p1,p2,p3):
a,b,c = np.linalg.norm(p2-p1), np.linalg.norm(p3-p2), np.linalg.norm(p1-p3)
s = 0.5*(a+b+c)
return np.sqrt(s*(s-a)*(s-b)*(s-c))
if __name__ == '__main__':
Demo()