-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDemo_OME.py
133 lines (94 loc) · 3.57 KB
/
Demo_OME.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import time
import numpy as np
from VISolver.Domains.SOI import SOI, CreateRandomNetwork
from VISolver.Solvers.Euler import Euler
from VISolver.Solvers.HeunEuler import HeunEuler
from VISolver.Projection import BoxProjection
from VISolver.Solver import Solve
from VISolver.Options import (
DescentOptions, Miscellaneous, Reporting, Termination, Initialization)
from VISolver.Log import PrintSimResults, PrintSimStats
import matplotlib.pyplot as plt
from IPython import embed
def Demo():
#__ONLINE_MONOTONE_EQUILIBRATION_DEMO_OF_A_SERVICE_ORIENTED_INTERNET__######
# Define Number of Different VIs
N = 10
np.random.seed(0)
# Define Initial Network and Domain
Network = CreateRandomNetwork(m=3,n=2,o=2,seed=np.random.randint(N))
Domain = SOI(Network=Network,alpha=2)
# Definte Initial Strategy
Strategies = [np.zeros(Domain.Dim)]
eta = 0.1
# Store Equilibrium Strategies and Cost To Equilibrium
Equilibria = []
Costs = []
for t in range(1000):
#__PERFORM_SINGLE_UPDATE
print('Time '+str(t))
# Set Method
Method = Euler(Domain=Domain,P=BoxProjection(lo=0))
# Set Options
Init = Initialization(Step=-eta)
Term = Termination(MaxIter=1)
Repo = Reporting(Requests=['Data'])
Misc = Miscellaneous()
Options = DescentOptions(Init,Term,Repo,Misc)
# Run Update
Result = Solve(Strategies[-1],Method,Domain,Options)
# Get New Strategy
Strategy = Result.PermStorage['Data'][-1]
Strategies += [Strategy]
#__FIND_EQUILIBRIUM_SOLUTION_OF_VI
# Set Method
Method = HeunEuler(Domain=Domain,P=BoxProjection(lo=0),Delta0=1e-5)
# Initialize Starting Point
Start = Strategies[-2]
# Calculate Initial Gap
gap_0 = Domain.gap_rplus(Start)
# Set Options
Init = Initialization(Step=-1e-10)
Term = Termination(MaxIter=25000,Tols=[(Domain.gap_rplus,1e-6*gap_0)])
Repo = Reporting(Requests=[Domain.gap_rplus,'Step','Data'])
Misc = Miscellaneous()
Options = DescentOptions(Init,Term,Repo,Misc)
# Print Stats
PrintSimStats(Domain,Method,Options)
# Start Solver
tic = time.time()
Results = Solve(Start,Method,Domain,Options)
toc = time.time() - tic
# Print Results
PrintSimResults(Options,Results,Method,toc)
# Get Equilibrium Strategy
Equilibrium = Results.PermStorage['Data'][-1]
Equilibria += [Equilibrium]
# Get Cost to Equilibrium (arc length)
Diffs = np.diff(Results.PermStorage['Data'])
Cost = np.linalg.norm(Diffs,axis=1).sum()
Costs += [Cost]
#__DEFINE_NEXT_VI
# Define Initial Network and Domain
Network = CreateRandomNetwork(m=3,n=2,o=2,seed=np.random.randint(N))
Domain = SOI(Network=Network,alpha=2)
# Compute Mean of Equilibria
Mean_Equilibrium = np.mean(Equilibria,axis=0)
# Scrap Last Strategy
Strategies = np.asarray(Strategies[:-1])
# Compute Strategies Distance From Mean Equilibrium
Distance_From_Mean = np.linalg.norm(Strategies-Mean_Equilibrium,axis=1)
# Plot Results
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax1.plot(Distance_From_Mean,label='Distance from Mean')
ax1.set_title('Online Monotone Equilibration of Dynamic SOI Network')
ax1.legend()
ax2 = fig.add_subplot(2,1,2)
ax2.plot(Costs,label='Cost to Mean')
ax2.set_xlabel('Time')
ax2.legend()
plt.savefig('OME.png')
embed()
if __name__ == '__main__':
Demo()