-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image.py
556 lines (479 loc) · 27.7 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
import argparse
import numpy as np
import os
import os.path as osp
import pickle
import scipy.stats
import sys
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.nn.functional as F
import data_list
from data_list import ImageList, LoadedImageList, sample_ratios, write_list
import loss
import lr_schedule
import math
import network
import pre_process as prep
import random
from scipy.stats import wasserstein_distance
from imgaug import augmenters as iaa
from PIL import Image
import tqdm
from data.usps2mnist.noise_mnist import *
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(osp.join(args.root_folder, path), 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def sp_blur_noise(image):
'''
Add salt and pepper noise to image and gaussian bluring image.
'''
image = np.asarray(image)
sp_blur = iaa.Sequential([iaa.GaussianBlur(sigma=8.00),
iaa.CoarseSaltAndPepper(p=0.5, size_percent=0.04)])
output = sp_blur.augment_image(image)
output = Image.fromarray(output)
return output
def corrupt_image(source_list):
noise_file = source_list.split('.')[0] + '_noisy_feature.txt'
with open(source_list, 'r') as f:
with open(noise_file, 'w') as f2:
for i in f.read().splitlines():
item = i.split(' ')[0]
save_path = item.split('.')[0] + '_corrupted.jpg'
image = pil_loader(item)
image = sp_blur_noise(image)
image.save(osp.join(args.root_folder, save_path))
item_new = item.split('.')[0] + '_corrupted.jpg'
ilabel = i.split(' ')[1]
log_str = item_new + ' ' + ilabel
f2.write(str(log_str) + "\n")
print('complete corrupting images!')
def image_classification_test_loaded(test_samples, test_labels, model, device='cpu'):
with torch.no_grad():
test_loss = 0
correct = 0
len_test = test_labels.shape[0]
bs = 72
for i in range(int(len_test / bs)):
data, target = torch.Tensor(test_samples[bs*i:bs*(i+1), :, :, :]).to(config["device"]), test_labels[bs*i:bs*(i+1)]
_, output = model(data)
test_loss += nn.CrossEntropyLoss()(output, target).item()
pred = torch.max(output, 1)[1]
correct += pred.eq(target.data.view_as(pred)).sum().item()
# Last test samples
data, target = torch.Tensor(test_samples[bs*(i+1):, :, :, :]).to(config["device"]), test_labels[bs*(i+1):]
_, output = model(data)
test_loss += nn.CrossEntropyLoss()(output, target).item()
pred = torch.max(output, 1)[1]
correct += pred.eq(target.data.view_as(pred)).sum().item()
accuracy = correct / len_test
test_loss /= len_test * 10
return accuracy
def train(config):
## Define start time
start_time = time.time()
## set pre-process
prep_dict = {}
prep_config = config["prep"]
prep_dict["source"] = prep.image_train(**config["prep"]['params'])
prep_dict["target"] = prep.image_train(**config["prep"]['params'])
prep_dict["test"] = prep.image_test(**config["prep"]['params'])
## prepare data
print("Preparing data", flush=True)
dsets = {}
dset_loaders = {}
data_config = config["data"]
train_bs = data_config["source"]["batch_size"]
test_bs = data_config["test"]["batch_size"]
root_folder = data_config["root_folder"]
dsets["source"] = ImageList(open(osp.join(root_folder, data_config["source"]["list_path"])).readlines(), \
transform=prep_dict["source"], root_folder=root_folder, ratios=config["ratios_source"])
dsets["target"] = ImageList(open(osp.join(root_folder, data_config["target"]["list_path"])).readlines(), \
transform=prep_dict["target"], root_folder=root_folder, ratios=config["ratios_target"])
# noisy label
if args.noise_type != 'clean':
source_labels = []
target_labels = []
for i, (img, l) in enumerate(dsets["source"].imgs):
source_labels.append(l)
for i, (img, l) in enumerate(dsets["target"].imgs):
target_labels.append(l)
#print("original source label", source_labels)
#print("original target label", target_labels)
#print("original source", dsets["source"].imgs)
source_labels, source_actual_noise_rate, source_noise_or_not = noise_mnist(config["device"], args.noise_type,
torch.tensor(source_labels).to(config["device"]), args.noise_rate)
target_labels, target_actual_noise_rate, target_noise_or_not = noise_mnist(config["device"], args.noise_type,
torch.tensor(target_labels).to(config["device"]), args.noise_rate)
print("source_actual_noise_rate", source_actual_noise_rate, "source_noise_or_not", source_noise_or_not)
print("target_actual_noise_rate", target_actual_noise_rate, "target_noise_or_not", target_noise_or_not)
for i, (img, l) in enumerate(dsets["source"].imgs):
dsets["source"].imgs[i] = (img, source_labels[i])
for i, (img, l) in enumerate(dsets["target"].imgs):
dsets["target"].imgs[i] = (img, target_labels[i])
#print("noisy source", dsets["source"].imgs)
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
shuffle=True, num_workers=4, drop_last=True)
dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
shuffle=True, num_workers=4, drop_last=True)
dsets["test"] = ImageList(open(osp.join(root_folder, data_config["test"]["list_path"])).readlines(),
transform=prep_dict["test"], root_folder=root_folder, ratios=config["ratios_test"])
dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
shuffle=False, num_workers=4)
test_path = os.path.join(root_folder, data_config["test"]["dataset_path"])
if os.path.exists(test_path):
print('Found existing dataset for test', flush=True)
with open(test_path, 'rb') as f:
[test_samples, test_labels] = pickle.load(f)
test_labels = torch.LongTensor(test_labels).to(config["device"])
else:
print('Missing test dataset', flush=True)
print('Building dataset for test and writing to {}'.format(
test_path), flush=True)
dset_test = ImageList(open(osp.join(root_folder, data_config["test"]["list_path"])).readlines(),
transform=prep_dict["test"], root_folder=root_folder, ratios=config['ratios_test'])
loaded_dset_test = LoadedImageList(dset_test)
test_samples, test_labels = loaded_dset_test.samples.numpy(), loaded_dset_test.targets.numpy()
with open(test_path, 'wb') as f:
pickle.dump([test_samples, test_labels], f)
class_num = config["network"]["params"]["class_num"]
test_samples, test_labels = sample_ratios(
test_samples, test_labels, config['ratios_test'])
# compute labels distribution on the source and target domain
source_label_distribution = np.zeros((class_num))
for img in dsets["source"].imgs:
source_label_distribution[img[1]] += 1
print("Total source samples: {}".format(np.sum(source_label_distribution)), flush=True)
print("Source samples per class: {}".format(source_label_distribution), flush=True)
source_label_distribution /= np.sum(source_label_distribution)
print("Source label distribution: {}".format(source_label_distribution), flush=True)
target_label_distribution = np.zeros((class_num))
for img in dsets["target"].imgs:
target_label_distribution[img[1]] += 1
print("Total target samples: {}".format(
np.sum(target_label_distribution)), flush=True)
print("Target samples per class: {}".format(target_label_distribution), flush=True)
target_label_distribution /= np.sum(target_label_distribution)
print("Target label distribution: {}".format(target_label_distribution), flush=True)
mixture = (source_label_distribution + target_label_distribution) / 2
jsd = (scipy.stats.entropy(source_label_distribution, qk=mixture) \
+ scipy.stats.entropy(target_label_distribution, qk=mixture)) / 2
print("JSD : {}".format(jsd), flush=True)
test_label_distribution = np.zeros((class_num))
for img in test_labels:
test_label_distribution[int(img.item())] += 1
print("Test samples per class: {}".format(test_label_distribution), flush=True)
test_label_distribution /= np.sum(test_label_distribution)
print("Test label distribution: {}".format(test_label_distribution), flush=True)
write_list(config["out_wei_file"], [round(x, 4) for x in test_label_distribution])
write_list(config["out_wei_file"], [round(x, 4) for x in source_label_distribution])
write_list(config["out_wei_file"], [round(x, 4) for x in target_label_distribution])
true_weights = torch.tensor(
target_label_distribution / source_label_distribution, dtype=torch.float, requires_grad=False)[:, None].to(config["device"])
print("True weights : {}".format(true_weights[:, 0].cpu().numpy()))
config["out_wei_file"].write(str(jsd) + "\n")
## set base network
net_config = config["network"]
base_network = net_config["name"](**net_config["params"])
base_network = base_network.to(config["device"])
## add additional network for some methods
if config["loss"]["random"]:
random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
else:
random_layer = None
if 'CDAN' in config['method']:
ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)
else:
ad_net = network.AdversarialNetwork(base_network.output_num(), 1024)
if config["loss"]["random"]:
random_layer.to(config["device"])
ad_net = ad_net.to(config["device"])
parameter_list = ad_net.get_parameters() + base_network.get_parameters()
parameter_list[-1]["lr_mult"] = config["lr_mult_im"]
## set optimizer
optimizer_config = config["optimizer"]
optimizer = optimizer_config["type"](parameter_list, \
**(optimizer_config["optim_params"]))
param_lr = []
for param_group in optimizer.param_groups:
param_lr.append(param_group["lr"])
schedule_param = optimizer_config["lr_param"]
lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]
# Maintain two quantities for the QP.
cov_mat = torch.tensor(np.zeros((class_num, class_num), dtype=np.float32),
requires_grad=False).to(config["device"])
pseudo_target_label = torch.tensor(np.zeros((class_num, 1), dtype=np.float32),
requires_grad=False).to(config["device"])
# Maintain one weight vector for BER.
class_weights = torch.tensor(
1.0 / source_label_distribution, dtype=torch.float, requires_grad=False).to(config["device"])
gpus = config['gpu'].split(',')
if len(gpus) > 1:
ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])
## train
len_train_source = len(dset_loaders["source"])
len_train_target = len(dset_loaders["target"])
transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
best_acc = 0.0
print("Preparations done in {:.0f} seconds".format(time.time() - start_time), flush=True)
print("Starting training for {} iterations using method {}".format(config["num_iterations"], config['method']), flush=True)
start_time_test = start_time = time.time()
for i in range(config["num_iterations"]):
if i % config["test_interval"] == config["test_interval"] - 1:
base_network.train(False)
print("test sample shape", test_samples.shape)
temp_acc = image_classification_test_loaded(test_samples, test_labels, base_network)
temp_model = nn.Sequential(base_network)
if temp_acc > best_acc:
best_acc = temp_acc
log_str = " iter: {:05d}, sec: {:.0f}, class: {:.5f}, da: {:.5f}, precision: {:.5f}".format(
i, time.time() - start_time_test, classifier_loss_value, transfer_loss_value, temp_acc)
config["out_log_file"].write(log_str+"\n")
config["out_log_file"].flush()
print(log_str, flush=True)
if 'IW' in config['method']:
current_weights = [round(x, 4) for x in base_network.im_weights.data.cpu().numpy().flatten()]
# write_list(config["out_wei_file"], current_weights)
print(current_weights, flush=True)
start_time_test = time.time()
if i % 500 == -1:
print("{} iterations in {} seconds".format(i, time.time() - start_time), flush=True)
loss_params = config["loss"]
## train one iter
base_network.train(True)
ad_net.train(True)
optimizer = lr_scheduler(optimizer, i, **schedule_param)
optimizer.zero_grad()
t = time.time()
if i % len_train_source == 0:
iter_source = iter(dset_loaders["source"])
if i % len_train_target == 0:
iter_target = iter(dset_loaders["target"])
inputs_source, label_source = iter_source.next()
inputs_target, _ = iter_target.next()
inputs_source, inputs_target, label_source = inputs_source.to(config["device"]), inputs_target.to(config["device"]), label_source.to(config["device"])
if args.corrupt != 'clean':
for i in range(inputs_source.shape[0]):
inputs_source[i] = noisy(config["device"], args.corrupt, inputs_source[i])
features_source, outputs_source = base_network(inputs_source)
features_target, outputs_target = base_network(inputs_target)
features = torch.cat((features_source, features_target), dim=0)
outputs = torch.cat((outputs_source, outputs_target), dim=0)
softmax_out = nn.Softmax(dim=1)(outputs)
if 'IW' in config['method']:
ys_onehot = torch.zeros(train_bs, class_num).to(config["device"])
ys_onehot.scatter_(1, label_source.view(-1, 1), 1)
# Compute weights on source data.
if 'ORACLE' in config['method']:
weights = torch.mm(ys_onehot, true_weights)
else:
weights = torch.mm(ys_onehot, base_network.im_weights)
source_preds, target_preds = outputs[:train_bs], outputs[train_bs:]
# Compute the aggregated distribution of pseudo-label on the target domain.
pseudo_target_label += torch.sum(
F.softmax(target_preds, dim=1), dim=0).view(-1, 1).detach()
# Update the covariance matrix on the source domain as well.
cov_mat += torch.mm(F.softmax(source_preds,
dim=1).transpose(1, 0), ys_onehot).detach()
if config['method'] == 'CDAN-E':
classifier_loss = nn.CrossEntropyLoss()(outputs_source, label_source)
entropy = loss.Entropy(softmax_out)
transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
total_loss = loss_params["trade_off"] * \
transfer_loss + classifier_loss
elif 'IWCDAN-E' in config['method']:
classifier_loss = torch.mean(
nn.CrossEntropyLoss(weight=class_weights, reduction='none')
(outputs_source, label_source) * weights) / class_num
entropy = loss.Entropy(softmax_out)
transfer_loss = loss.CDAN(
[features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer, weights=weights, device=config["device"])
total_loss = loss_params["trade_off"] * \
transfer_loss + classifier_loss
elif config['method'] == 'CDAN':
classifier_loss = nn.CrossEntropyLoss()(outputs_source, label_source)
transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss
elif 'IWCDAN' in config['method']:
classifier_loss = torch.mean(
nn.CrossEntropyLoss(weight=class_weights, reduction='none')
(outputs_source, label_source) * weights) / class_num
transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer, weights=weights)
total_loss = loss_params["trade_off"] * \
transfer_loss + classifier_loss
elif config['method'] == 'DANN':
classifier_loss = nn.CrossEntropyLoss()(outputs_source, label_source)
transfer_loss = loss.DANN(features, ad_net, config["device"])
total_loss = loss_params["trade_off"] * \
transfer_loss + classifier_loss
elif 'IWDAN' in config['method']:
classifier_loss = torch.mean(
nn.CrossEntropyLoss(weight=class_weights, reduction='none')
(outputs_source, label_source) * weights) / class_num
transfer_loss = loss.IWDAN(features, ad_net, weights)
total_loss = loss_params["trade_off"] * \
transfer_loss + classifier_loss
elif config['method'] == 'NANN':
classifier_loss = nn.CrossEntropyLoss()(outputs_source, label_source)
total_loss = classifier_loss
else:
raise ValueError('Method cannot be recognized.')
total_loss.backward()
optimizer.step()
transfer_loss_value = 0 if config['method'] == 'NANN' else transfer_loss.item()
classifier_loss_value = classifier_loss.item()
total_loss_value = transfer_loss_value + classifier_loss_value
if ('IW' in config['method']) and i % (config["dataset_mult_iw"] * len_train_source) == config["dataset_mult_iw"] * len_train_source - 1:
pseudo_target_label /= train_bs * \
len_train_source * config["dataset_mult_iw"]
cov_mat /= train_bs * len_train_source * config["dataset_mult_iw"]
print(i, np.sum(cov_mat.cpu().detach().numpy()), train_bs * len_train_source)
# Recompute the importance weight by solving a QP.
base_network.im_weights_update(source_label_distribution,
pseudo_target_label.cpu().detach().numpy(),
cov_mat.cpu().detach().numpy(),
config["device"])
current_weights = [
round(x, 4) for x in base_network.im_weights.data.cpu().numpy().flatten()]
write_list(config["out_wei_file"], [np.linalg.norm(
current_weights - true_weights.cpu().numpy().flatten())] + current_weights)
print(np.linalg.norm(current_weights -
true_weights.cpu().numpy().flatten()), current_weights)
cov_mat[:] = 0.0
pseudo_target_label[:] = 0.0
return best_acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Conditional Domain Adversarial Network')
parser.add_argument('method', type=str, choices=[
'NANN', 'DANN', 'IWDAN', 'IWDANORACLE', 'CDAN', 'IWCDAN', 'IWCDANORACLE', 'CDAN-E', 'IWCDAN-E', 'IWCDAN-EORACLE'])
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--net', type=str, default='ResNet50', choices=["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152", "VGG11", "VGG13", "VGG16", "VGG19", "VGG11BN", "VGG13BN", "VGG16BN", "VGG19BN", "AlexNet"], help="Network type. Only tested with ResNet50")
parser.add_argument('--dset', type=str, default='office-31', choices=['office-31', 'visda', 'office-home'], help="The dataset or source dataset used")
parser.add_argument('--s_dset_file', type=str, default='amazon_list.txt', help="The source dataset path list")
parser.add_argument('--t_dset_file', type=str, default='webcam_list.txt', help="The target dataset path list")
parser.add_argument('--test_interval', type=int, default=500, help="interval of two continuous test phase")
parser.add_argument('--snapshot_interval', type=int, default=10000, help="interval of two continuous output model")
parser.add_argument('--output_dir', type=str, default='results', help="output directory")
parser.add_argument('--root_folder', type=str, default=None, help="The folder containing the datasets")
parser.add_argument('--lr', type=float, default=0.001,
help="learning rate")
parser.add_argument('--trade_off', type=float, default=1.0, help="factor for dann")
parser.add_argument('--random', type=bool, default=False, help="whether use random projection")
parser.add_argument('--seed', type=int, default='42', help="Random seed")
parser.add_argument('--lr_mult_im', type=int, default='1', help="Multiplicative factor for IM")
parser.add_argument('--dataset_mult_iw', type=int, default='0', help="Frequency of weight updates in multiples of the dataset. Default: 1 for digits and visda, 15 for office datasets")
parser.add_argument('--num_iterations', type=int, default='100000', help="Number of batch updates")
parser.add_argument('--ratio', type=int, default=0, help='ratio option. If 0 original dataset, if 1, only 30% of samples in the first half of the classes are considered')
parser.add_argument('--ma', type=float, default=0.5,
help='weight for the moving average of iw')
parser.add_argument('--noise_type', default='clean', choices=['clean', 'pairflip', 'symmetric'])
parser.add_argument('--noise_rate', type=float, default=0.2,
help='noise rate for the label of training data')
parser.add_argument('--corrupt', default='clean', choices=['gauss', 's&p', 'poisson', 'speckle'])
args = parser.parse_args()
torch.multiprocessing.set_start_method('spawn')
if args.root_folder is None:
args.root_folder = 'data/{}/'.format(args.dset)
if args.s_dset_file != args.t_dset_file:
# Set GPU ID
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# Set random number seed.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# train config
config = {}
config['method'] = args.method
config["gpu"] = args.gpu_id
config["device"] = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config["num_iterations"] = args.num_iterations
config["test_interval"] = args.test_interval
config["snapshot_interval"] = args.snapshot_interval
config["output_for_test"] = True
config["output_path"] = args.output_dir
if not osp.exists(config["output_path"]):
os.system('mkdir -p '+ config["output_path"])
config["out_log_file"] = open(osp.join(config["output_path"], "log.txt"), "w")
config["out_wei_file"] = open(osp.join(config["output_path"], "log_weights.txt"), "w")
if not osp.exists(config["output_path"]):
os.mkdir(config["output_path"])
config["prep"] = {'params':{"resize_size":256, "crop_size":224, 'alexnet':False}}
config["loss"] = {"trade_off":args.trade_off}
if "AlexNet" in args.net:
config["prep"]['params']['alexnet'] = True
config["prep"]['params']['crop_size'] = 227
config["network"] = {"name":network.AlexNetFc, \
"params":{"use_bottleneck":True, "bottleneck_dim":256, "new_cls":True, "ma": args.ma} }
elif "ResNet" in args.net:
config["network"] = {"name":network.ResNetFc, \
"params":{"resnet_name":args.net, "use_bottleneck":True, "bottleneck_dim":256, "new_cls":True, "ma": args.ma} }
elif "VGG" in args.net:
config["network"] = {"name":network.VGGFc, \
"params":{"vgg_name":args.net, "use_bottleneck":True, "bottleneck_dim":256, "new_cls":True, "ma": args.ma} }
config["loss"]["random"] = args.random
config["loss"]["random_dim"] = 1024
config["optimizer"] = {"type":optim.SGD, "optim_params":{'lr':args.lr, "momentum":0.9, \
"weight_decay":0.0005, "nesterov":True}, "lr_type":"inv", \
"lr_param":{"lr":args.lr, "gamma":0.001, "power":0.75} }
config["dataset"] = args.dset
config["corrupt"] = args.corrupt
config["data"] = {"source": {"list_path": args.s_dset_file, "batch_size": 36}, \
"target": {"list_path": args.t_dset_file, "batch_size": 36}, \
"test": {"list_path": args.t_dset_file,
"dataset_path": "{}_test.pkl".format(args.t_dset_file), "batch_size": 4},
"root_folder": args.root_folder}
config["lr_mult_im"] = args.lr_mult_im
if config["dataset"] == "office-31":
if ("amazon" in args.s_dset_file and "webcam" in args.t_dset_file) or \
("webcam" in args.s_dset_file and "dslr" in args.t_dset_file) or \
("webcam" in args.s_dset_file and "amazon" in args.t_dset_file) or \
("dslr" in args.s_dset_file and "amazon" in args.t_dset_file):
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
elif ("amazon" in args.s_dset_file and "dslr" in args.t_dset_file) or \
("dslr" in args.s_dset_file and "webcam" in args.t_dset_file):
config["optimizer"]["lr_param"]["lr"] = 0.0003 # optimal parameters
config["network"]["params"]["class_num"] = 31
config["ratios_source"] = [1] * 31
if args.ratio == 1:
config["ratios_source"] = [0.3] * 15 + [1] * 16
config["ratios_target"] = [1] * 31
if args.dataset_mult_iw == 0:
args.dataset_mult_iw = 15
elif config["dataset"] == "visda":
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
config["network"]["params"]["class_num"] = 12
config["ratios_source"] = [1] * 12
if args.ratio == 1:
config["ratios_source"] = [0.3] * 6 + [1] * 6
config["ratios_target"] = [1] * 12
if args.dataset_mult_iw == 0:
args.dataset_mult_iw = 1
elif config["dataset"] == "office-home":
config["optimizer"]["lr_param"]["lr"] = 0.001 # optimal parameters
config["network"]["params"]["class_num"] = 65
config["ratios_source"] = [1] * 65
if args.ratio == 1:
config["ratios_source"] = [0.3] * 32 + [1] * 33
config["ratios_target"] = [1] * 65
if args.dataset_mult_iw == 0:
args.dataset_mult_iw = 15
else:
raise ValueError('Dataset cannot be recognized. Please define your own dataset here.')
config["dataset_mult_iw"] = args.dataset_mult_iw
config["ratios_test"] = config["ratios_target"]
config["out_log_file"].write(str(config) + "\n")
config["out_log_file"].flush()
print("-" * 50, flush=True)
print("\nRunning {} on the {} dataset with source {} and target {} and trade off {}\n".format(args.method, args.dset,args.s_dset_file, args.t_dset_file, args.trade_off), flush=True )
print("-" * 50, flush=True)
train(config)