-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3790be3
commit dec1728
Showing
4 changed files
with
444 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import torch.nn as nn | ||
import torchvision.models as models | ||
import torch.nn.functional as F | ||
import torch as torch | ||
|
||
|
||
class SingleAE(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, z_dim): | ||
super(SingleAE, self).__init__() | ||
self.encoder1 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
) | ||
self.decoder1 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
def forward(self, x1): | ||
z1 = self.encoder1(x1) | ||
xhat1 = self.decoder1(z1) | ||
return xhat1 | ||
|
||
|
||
class AE(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, z_dim): | ||
super(AE, self).__init__() | ||
self.encoder1 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
) | ||
self.decoder1 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
self.encoder2 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
) | ||
self.decoder2 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
def forward(self, x1, x2): | ||
_, d = x1.shape | ||
z1 = self.encoder1(x1) | ||
xhat1 = self.decoder1(z1) | ||
z2 = self.encoder1(x2) | ||
xhat2 = self.decoder1(z2) | ||
return z1, z2, xhat1, xhat2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
import torchvision | ||
from torch.autograd import Variable | ||
import itertools | ||
from utils import * | ||
|
||
|
||
class Cholesky(torch.autograd.Function): | ||
def forward(ctx, a): | ||
l = torch.cholesky(a, False) | ||
ctx.save_for_backward(l) | ||
return l | ||
|
||
def backward(ctx, grad_output): | ||
l, = ctx.saved_variables | ||
linv = l.inverse() | ||
inner = torch.tril(torch.mm(l.t(), grad_output)) * torch.tril( | ||
1.0 - Variable(l.data.new(l.size(1)).fill_(0.5).diag())) | ||
s = torch.mm(linv.t(), torch.mm(inner, linv)) | ||
return s | ||
|
||
|
||
class DaGMM(nn.Module): | ||
"""Residual Block.""" | ||
|
||
def __init__(self, input_dim, hidden_dim, z_dim, n_gmm=2): | ||
super(DaGMM, self).__init__() | ||
|
||
latent_dim = z_dim + 2 # hidden representation plus reconstruction loss and cos similarity | ||
# layers = [] | ||
# layers += [nn.Linear(input_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, z_dim)] | ||
# | ||
# self.encoder = nn.Sequential(*layers) | ||
self.encoder = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
|
||
) | ||
self.decoder = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
# layers = [] | ||
# layers += [nn.Linear(z_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, hidden_dim)] | ||
# layers += [nn.Tanh()] | ||
# layers += [nn.Linear(hidden_dim, input_dim)] | ||
# | ||
# self.decoder = nn.Sequential(*layers) | ||
|
||
layers = [] | ||
layers += [nn.Linear(latent_dim, 10)] | ||
layers += [nn.Tanh()] | ||
layers += [nn.Dropout(p=0.5)] | ||
layers += [nn.Linear(10, n_gmm)] | ||
layers += [nn.Softmax(dim=1)] | ||
|
||
self.estimation = nn.Sequential(*layers) | ||
|
||
self.register_buffer("phi", torch.zeros(n_gmm)) | ||
self.register_buffer("mu", torch.zeros(n_gmm, latent_dim)) | ||
self.register_buffer("cov", torch.zeros(n_gmm, latent_dim, latent_dim)) | ||
|
||
def relative_euclidean_distance(self, a, b): | ||
return (a - b).norm(2, dim=1) / a.norm(2, dim=1) | ||
|
||
def forward(self, x): | ||
enc = self.encoder(x) | ||
dec = self.decoder(enc) | ||
|
||
rec_cosine = F.cosine_similarity(x, dec, dim=1) | ||
rec_euclidean = self.relative_euclidean_distance(x, dec) | ||
|
||
z = torch.cat([enc, rec_euclidean.unsqueeze(-1), rec_cosine.unsqueeze(-1)], dim=1) | ||
|
||
gamma = self.estimation(z) | ||
|
||
return enc, dec, z, gamma | ||
|
||
def compute_gmm_params(self, z, gamma): | ||
if torch.isnan(gamma.sum()): | ||
print("pause") | ||
gamma = torch.clamp(gamma, 0.0001, 0.9999) | ||
N = gamma.size(0) | ||
# K | ||
sum_gamma = torch.sum(gamma, dim=0) | ||
|
||
# K | ||
phi = (sum_gamma / N) | ||
|
||
self.phi = phi.data | ||
|
||
# K x D | ||
mu = torch.sum(gamma.unsqueeze(-1) * z.unsqueeze(1), dim=0) / (sum_gamma.unsqueeze(-1)) | ||
self.mu = mu.data | ||
# z = N x D | ||
# mu = K x D | ||
# gamma N x K | ||
|
||
# z_mu = N x K x D | ||
z_mu = (z.unsqueeze(1) - mu.unsqueeze(0)) | ||
|
||
# z_mu_outer = N x K x D x D | ||
z_mu_outer = z_mu.unsqueeze(-1) * z_mu.unsqueeze(-2) | ||
|
||
# K x D x D | ||
cov = torch.sum(gamma.unsqueeze(-1).unsqueeze(-1) * z_mu_outer, dim=0) / sum_gamma.unsqueeze(-1).unsqueeze(-1) | ||
|
||
self.cov = cov.data | ||
|
||
return phi, mu, cov | ||
|
||
def compute_energy(self, z, phi=None, mu=None, cov=None, size_average=True): | ||
# Compute the energy based on the specified gmm params. | ||
# If none are specified use the cached values. | ||
|
||
if phi is None: | ||
phi = to_var(self.phi) | ||
if mu is None: | ||
mu = to_var(self.mu) | ||
if cov is None: | ||
cov = to_var(self.cov) | ||
k, D, _ = cov.size() | ||
|
||
z_mu = (z.unsqueeze(1) - mu.unsqueeze(0)) | ||
|
||
cov_inverse = [] | ||
det_cov = [] | ||
cov_diag = 0 | ||
eps = 1e-8 | ||
for i in range(k): | ||
# K x D x D | ||
cov_k = cov[i] + to_var(torch.eye(D) * eps) | ||
cov_inverse.append(torch.inverse(cov_k).unsqueeze(0)) | ||
# (sign, logdet) = np.linalg.slogdet(cov_k.data.cpu().numpy() * (2 * np.pi)) | ||
# det = sign * np.exp(logdet) | ||
# det_cov.append(det) | ||
det = cov_k.data.cpu().numpy() * (2 * np.pi) | ||
det_a = np.linalg.det(det) | ||
if np.isnan(np.array(det_a)): | ||
print('pause') | ||
# assert np.isnan(np.array(det_a)) | ||
det_cov.append(np.linalg.det(cov_k.data.cpu().numpy() * (2 * np.pi))) | ||
cov_diag = cov_diag + torch.sum(1 / cov_k.diag()) | ||
|
||
# K x D x D | ||
cov_inverse = torch.cat(cov_inverse, dim=0) | ||
# K | ||
det_cov = to_var(torch.from_numpy(np.float32(np.array(det_cov)))) | ||
|
||
# N x K | ||
exp_term_tmp = -0.5 * torch.sum(torch.sum(z_mu.unsqueeze(-1) * cov_inverse.unsqueeze(0), dim=-2) * z_mu, dim=-1) | ||
# for stability (logsumexp) | ||
max_val = torch.max((exp_term_tmp).clamp(min=0), dim=1, keepdim=True)[0] | ||
|
||
exp_term = torch.exp(exp_term_tmp - max_val) | ||
|
||
sample_energy = -max_val.squeeze() - torch.log( | ||
torch.sum(phi.unsqueeze(0) * exp_term / (torch.sqrt(det_cov)).unsqueeze(0), dim=1) + eps) | ||
|
||
if size_average: | ||
sample_energy = torch.mean(sample_energy) | ||
|
||
return sample_energy, cov_diag | ||
|
||
|
||
def loss_function(self, x, x_hat, z, gamma, lambda_energy, lambda_cov_diag): | ||
|
||
recon_error = torch.mean((x - x_hat) ** 2) | ||
|
||
phi, mu, cov = self.compute_gmm_params(z, gamma) | ||
|
||
sample_energy, cov_diag = self.compute_energy(z, phi, mu, cov) | ||
|
||
loss = recon_error + lambda_energy * sample_energy + lambda_cov_diag * cov_diag | ||
|
||
return loss, sample_energy, recon_error, cov_diag |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import torch.nn as nn | ||
import torchvision.models as models | ||
import torch.nn.functional as F | ||
import torch as torch | ||
|
||
class SingleAE(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, z_dim): | ||
super(SingleAE, self).__init__() | ||
self.encoder1 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
) | ||
self.decoder1 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
def forward(self, x1): | ||
z1 = self.encoder1(x1) | ||
xhat1 = self.decoder1(z1) | ||
return xhat1 | ||
|
||
class AE(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, z_dim): | ||
super(AE, self).__init__() | ||
self.encoder1 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
|
||
) | ||
self.decoder1 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
self.encoder2 = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, z_dim), | ||
|
||
) | ||
self.decoder2 = nn.Sequential( | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(z_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(0.5), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LeakyReLU(0.1), | ||
nn.Linear(hidden_dim, input_dim), | ||
nn.Sigmoid(), | ||
) | ||
|
||
def forward(self, x1, x2): | ||
_, d = x1.shape | ||
z1 = self.encoder1(x1) | ||
xhat1 = self.decoder1(z1) | ||
z2 = self.encoder1(x2) | ||
xhat2 = self.decoder1(z2) | ||
return z1, z2, xhat1, xhat2 | ||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.