-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoodgen.py
66 lines (57 loc) · 2.59 KB
/
oodgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision.utils import save_image
import os
import copy
import time
from models.wrn_virtual import oodGenerator, InversGenerator
MIN_SAMPLES_PER_LABEL=1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#central generator using crossentropy
class CentralGen:
def __init__(self, args, local_iter, num_class, model='wrn'):
self.num_class = num_class
self.local_iter = local_iter
self.generative_model = InversGenerator(num_class, args.widen_factor, width_scale=args.width_scale, model=model).to(device)
self.generative_optimizer = torch.optim.Adam(
params=self.generative_model.parameters(),
lr=1e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=1e-2, amsgrad=False)
self.generative_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.generative_optimizer, gamma=0.98)
def train_generator(self, args, user_classifier, epoches=1):
"""
Learn a generator that find a consensus latent representation z, given a label 'y'.
:param net: local training model
:param train_loader: local training loader (ID data)
:param batch_size:
:param epoches:
:param latent_layer_idx: if set to -1 (-2), get latent representation of the last (or 2nd to last) layer.
:param verbose: print loss information.
:return: Do not return angeneratorything.
"""
#self.generative_regularizer.train()
DIVERSITY_LOSS = 0
def update_generator_(args, diversity_loss):
self.generative_model.train()
for i in range(self.local_iter):
self.generative_optimizer.zero_grad()
oodclass = [i for i in range(self.num_class)]
oody = np.random.choice(oodclass, args.oe_batch_size)
oody = torch.LongTensor(oody).cuda()
oodz = self.generative_model(oody)
logit_given_gen = user_classifier(oodz)
if args.method == 'crossentropy':
diversity_loss = F.cross_entropy(logit_given_gen, oody) # encourage different outputs
diversity_loss.backward()
self.generative_optimizer.step()
return diversity_loss
for i in range(epoches):
DIVERSITY_LOSS=update_generator_(
args, DIVERSITY_LOSS)
info="Generator: Diversity Loss = {:.4f}, ". \
format(DIVERSITY_LOSS)
print(info)
self.generative_lr_scheduler.step()