-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcore.py
373 lines (325 loc) · 16.8 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""Core functions of federate learning."""
import argparse
import copy
import numpy as np
from advertorch.attacks import LinfPGDAttack
from torch import nn
from federated.aggregation import ModelAccumulator, SlimmableModelAccumulator
from nets.slimmable_models import get_slim_ratios_from_str, parse_lognorm_slim_schedule
from utils.utils import shuffle_sampler, str2bool
class _Federation:
"""A helper class for federated data creation.
Use `add_argument` to setup ArgumentParser and then use parsed args to init the class.
"""
_model_accum: ModelAccumulator
@classmethod
def add_argument(cls, parser: argparse.ArgumentParser):
# data
parser.add_argument('--percent', type=float, default=1,
help='percentage of dataset for training')
parser.add_argument('--val_ratio', type=float, default=0.1,
help='ratio of train set for validation')
parser.add_argument('--batch', type=int, default=32, help='batch size')
parser.add_argument('--test_batch', type=int, default=128, help='batch size for test')
# federated
parser.add_argument('--pd_nuser', type=int, default=10, help='#users per domain.')
parser.add_argument('--pr_nuser', type=int, default=-1, help='#users per comm round '
'[default: all]')
parser.add_argument('--pu_nclass', type=int, default=-1, help='#class per user. -1 or 0: all')
parser.add_argument('--domain_order', choices=list(range(5)), type=int, default=0,
help='select the order of domains')
parser.add_argument('--partition_mode', choices=['uni', 'dir'], type=str.lower, default='uni',
help='the mode when splitting domain data into users: uni - uniform '
'distribution (all user have the same #samples); dir - Dirichlet'
' distribution (non-iid sample sizes)')
parser.add_argument('--con_test_cls', action='store_true',
help='Ensure the test classes are the same training for a client. '
'Meanwhile, make test sets are uniformly splitted for clients. '
'Mainly influence class-niid settings.')
parser.add_argument('--local_fc', action='store_true', help='use local FC layer.')
@classmethod
def render_run_name(cls, args):
run_name = f'__pd_nuser_{args.pd_nuser}'
if args.percent != 0.3: run_name += f'__pct_{args.percent}'
if args.pu_nclass > 0: run_name += f"__pu_nclass_{args.pu_nclass}"
if args.pr_nuser != -1: run_name += f'__pr_nuser_{args.pr_nuser}'
if args.domain_order != 0: run_name += f'__do_{args.domain_order}'
if args.partition_mode != 'uni': run_name += f'__part_md_{args.partition_mode}'
if args.con_test_cls: run_name += '__ctc'
if args.local_fc: run_name += '__lfc'
return run_name
def __init__(self, data, args):
self.args = args
# Prepare Data
num_classes = 10
if data == 'Digits':
from utils.data_utils import DigitsDataset
from utils.data_loader import prepare_digits_data
prepare_data = prepare_digits_data
DataClass = DigitsDataset
elif data == 'DomainNet':
from utils.data_utils import DomainNetDataset
from utils.data_loader import prepare_domainnet_data
prepare_data = prepare_domainnet_data
DataClass = DomainNetDataset
elif data == 'Cifar10':
from utils.data_utils import CifarDataset
from utils.data_loader import prepare_cifar_data
prepare_data = prepare_cifar_data
DataClass = CifarDataset
elif data == 'stl':
from utils.data_utils import STLDataset
from utils.data_loader import prepare_stl_data
prepare_data = prepare_stl_data
DataClass = STLDataset
elif data == 'Cifar100':
from utils.data_utils import CifarDataset100
from utils.data_loader import prepare_cifar100_data
prepare_data = prepare_cifar100_data
DataClass = CifarDataset100
num_classes = 100
elif data == 'tin':
from utils.data_utils import TinyImageNet
from utils.data_loader import prepare_imagenet_data
prepare_data = prepare_imagenet_data
DataClass = TinyImageNet
num_classes = 200
elif data == 'ImageNet':
from utils.data_utils import ImageNet12
from utils.data_loader import prepare_ImageNet_data
prepare_data = prepare_ImageNet_data
DataClass = ImageNet12
num_classes = 12
else:
raise ValueError(f"Unknown dataset: {data}")
all_domains = DataClass.resorted_domains[args.domain_order]
train_loaders, val_loaders, test_loaders, clients = prepare_data(
args, domains=all_domains,
n_user_per_domain=args.pd_nuser,
n_class_per_user=args.pu_nclass,
partition_seed=args.seed + 1,
partition_mode=args.partition_mode,
val_ratio=args.val_ratio,
eq_domain_train_size=args.partition_mode == 'uni',
consistent_test_class=args.con_test_cls,
)
clients = [c + ' ' + ('noised' if hasattr(args, 'adv_lmbd') and args.adv_lmbd > 0.
else 'clean') for c in clients]
self.train_loaders = train_loaders
self.val_loaders = val_loaders
self.test_loaders = test_loaders
self.clients = clients
self.num_classes = num_classes
self.all_domains = all_domains
# Setup fed
self.client_num = len(self.clients)
client_weights = [len(tl.dataset) for tl in train_loaders]
self.client_weights = [w / sum(client_weights) for w in client_weights]
pr_nuser = args.pr_nuser if args.pr_nuser > 0 else self.client_num
self.args.pr_nuser = pr_nuser
self.client_sampler = UserSampler([i for i in range(self.client_num)], pr_nuser, mode='uni')
def get_data(self):
return self.train_loaders, self.val_loaders, self.test_loaders
def make_aggregator(self, running_model, **kwargs):
self._model_accum = ModelAccumulator(running_model, self.args.pr_nuser, self.client_num,
**kwargs)
return self._model_accum
@property
def model_accum(self):
if not hasattr(self, '_model_accum'):
raise RuntimeError(f"model_accum has not been set yet. Call `make_aggregator` first.")
return self._model_accum
def download(self, running_model, client_idx, strict=True):
"""Download (personalized) global model to running_model."""
self.model_accum.load_model(running_model, client_idx, strict=strict)
def upload(self, running_model, client_idx):
"""Upload client model."""
self.model_accum.add(client_idx, running_model, self.client_weights[client_idx])
def aggregate(self):
"""Aggregate received models and update global model."""
self.model_accum.update_server_and_reset()
def get_global_fc(self):
return self.model_accum.get_global_fc()
class HeteFederation(_Federation):
"""Heterogeneous federation where each client is capable for training different widths."""
@classmethod
def add_argument(cls, parser: argparse.ArgumentParser):
super(HeteFederation, cls).add_argument(parser)
parser.add_argument('--slim_ratios', type=str, default='8-4-2-1',
help='define the slim_ratio for groups, for example, 8-4-2-1 [default]'
' means x1/8 net for the 1st group, and x1/4 for the 2nd')
parser.add_argument('--val_ens_only', action='store_true',
help='only validate the full-size model')
@classmethod
def render_run_name(cls, args):
run_name = super(HeteFederation, cls).render_run_name(args)
if args.slim_ratios != '8-4-2-1': run_name += f'__{args.slim_ratios}'
return run_name
def __init__(self, data, args):
super(HeteFederation, self).__init__(data, args)
train_slim_ratios = get_slim_ratios_from_str(args.slim_ratios)
if len(train_slim_ratios) <= 1:
info = f"WARN: There is no width to customize for training with " \
f"slim_ratios={args.slim_ratios}. To set a non-single" \
f" slim_ratios."
if len(train_slim_ratios) > 0:
print(info)
else:
raise RuntimeError(info)
max_slim_ratio = max(train_slim_ratios)
if args.val_ens_only:
val_slim_ratios = [max_slim_ratio] # only validate the max width
else:
val_slim_ratios = copy.deepcopy(train_slim_ratios)
if max_slim_ratio not in val_slim_ratios:
val_slim_ratios.append(max_slim_ratio) # make sure the max width model is validated.
self.train_slim_ratios = train_slim_ratios
self.user_max_slim_ratios = self.get_slim_ratio_schedule(train_slim_ratios, args.slim_ratios)
self.val_slim_ratios = val_slim_ratios
def get_slim_ratio_schedule(self, train_slim_ratios: list, mode: str):
if mode.startswith('ln'): # lognorm
return parse_lognorm_slim_schedule(train_slim_ratios, mode, self.client_num)
else:
return [train_slim_ratios[int(len(train_slim_ratios) * i / self.client_num)]
for i, cname in enumerate(self.clients)]
def make_aggregator(self, running_model, local_bn=False):
self._model_accum = SlimmableModelAccumulator(running_model, self.args.pr_nuser,
self.client_num, local_bn=local_bn)
return self._model_accum
def upload(self, running_model, client_idx, max_slim_ratio=None, slim_bias_idx=None):
assert max_slim_ratio is not None
assert slim_bias_idx is not None
self.model_accum.add(client_idx, running_model, self.client_weights[client_idx],
max_slim_ratio=max_slim_ratio, slim_bias_idx=slim_bias_idx)
def sample_bases(self, client_idx):
"""Sample slimmer base models for the client.
Return slim_ratios, slim_shifts
"""
max_slim_ratio = self.user_max_slim_ratios[client_idx]
slim_shifts = [0]
slim_ratios = [max_slim_ratio]
print(f" max slim ratio: {max_slim_ratio} "
f"slim_ratios={slim_ratios}, slim_shifts={slim_shifts}")
return slim_ratios, slim_shifts
class SHeteFederation(HeteFederation):
"""Extend HeteroFL w/ local slimmable training."""
@classmethod
def add_argument(cls, parser: argparse.ArgumentParser):
super(SHeteFederation, cls).add_argument(parser)
parser.add_argument('--slimmable_train', type=str2bool, default=True,
help='train all budget-compatible slimmable networks, otherwise HeteroFL')
@classmethod
def render_run_name(cls, args):
run_name = super(SHeteFederation, cls).render_run_name(args)
if not args.slimmable_train: run_name += f'__nst'
return run_name
def sample_bases(self, client_idx):
"""Sample slimmer base models for the client.
Return slim_ratios, slim_shifts
"""
max_slim_ratio = self.user_max_slim_ratios[client_idx]
if self.args.slimmable_train:
if len(self.train_slim_ratios) > 4:
print("WARN: over 4 trained slim ratios which will cause large overhead for"
" slimmable training. Try to set slimmable_train=False (HeteroFL) instead.")
slim_ratios = [r for r in self.train_slim_ratios if r <= max_slim_ratio]
else:
slim_ratios = [max_slim_ratio]
slim_shifts = [0] * len(slim_ratios)
print(f" max slim ratio: {max_slim_ratio} "
f"slim_ratios={slim_ratios}, slim_shifts={slim_shifts}")
return slim_ratios, slim_shifts
class SplitFederation(HeteFederation):
"""Split a net into multiple subnets and train them in federated learning."""
@classmethod
def add_argument(cls, parser: argparse.ArgumentParser):
super(SplitFederation, cls).add_argument(parser)
parser.add_argument('--atom_slim_ratio', type=float, default=0.125,
help='the width ratio of a base model')
@classmethod
def render_run_name(cls, args):
run_name = super(SplitFederation, cls).render_run_name(args)
assert 0. < args.atom_slim_ratio <= 1., f"Invalid slim_ratio: {args.atom_slim_ratio}"
if args.atom_slim_ratio != 0.125: run_name += f"__asr{args.atom_slim_ratio}"
return run_name
def __init__(self, data, args):
super(SplitFederation, self).__init__(data, args)
assert args.atom_slim_ratio <= min(self.train_slim_ratios), \
f"Base model's width ({args.atom_slim_ratio}) is larger than that of minimal allowed " \
f"width ({min(self.train_slim_ratios)})"
self.num_base = int(max(self.train_slim_ratios) / args.atom_slim_ratio)
self.user_base_sampler = shuffle_sampler(list(range(self.num_base)))
def sample_bases(self, client_idx):
"""Sample base models for the client.
Return slim_ratios, slim_shifts
"""
# (Alg 2) Sample base models defined by shift index.
max_slim_ratio = self.user_max_slim_ratios[client_idx]
user_n_base = int(max_slim_ratio / self.args.atom_slim_ratio)
slim_shifts = [self.user_base_sampler.next()]
if user_n_base > 1:
_sampler = shuffle_sampler([v for v in self.user_base_sampler.arr if v != slim_shifts[0]])
slim_shifts += [_sampler.next() for _ in range(user_n_base - 1)]
slim_ratios = [self.args.atom_slim_ratio] * user_n_base
print(f" max slim ratio: {max_slim_ratio} "
f"slim_ratios={slim_ratios}, slim_shifts={slim_shifts}")
return slim_ratios, slim_shifts
class UserSampler(object):
def __init__(self, users, select_nuser, mode='all'):
self.users = users
self.total_num_user = len(users)
self.select_nuser = select_nuser
self.mode = mode
if mode == 'all':
assert select_nuser == self.total_num_user, "Conflict config: Select too few users."
def iter(self):
if self.mode == 'all' or self.select_nuser == self.total_num_user:
sel = np.arange(len(self.users))
elif self.mode == 'uni':
sel = np.random.choice(self.total_num_user, self.select_nuser, replace=False)
else:
raise ValueError(f"Unsupported mode: {self.mode}")
for i in sel:
yield self.users[i]
class AdversaryCreator(object):
"""A factory producing adversary.
Args:
attack: Name. MIA for MomentumIterativeAttack with Linf norm. LSA for LocalSearchAttack.
eps: Constraint on the distortion norm
steps: Number of attack steps
"""
supported_adv = ['LinfPGD', 'LinfPGD20', 'LinfPGD20_eps16', 'LinfPGD100','LinfPGD100_eps16',
'LinfPGD4_eps4', 'LinfPGD3_eps4', 'LinfPGD7_eps4',
]
def __init__(self, attack: str, **kwargs):
self.attack = attack
if '_eps' in self.attack:
self.attack, default_eps = self.attack.split('_eps')
self.eps = kwargs.setdefault('eps', int(default_eps))
else:
self.eps = kwargs.setdefault('eps', 8.)
if self.attack.startswith('LinfPGD') and self.attack[len('LinfPGD'):].isdigit():
assert 'steps' not in kwargs, "The steps is set by the attack name while " \
"found additional set in kwargs."
self.steps = int(self.attack[len('LinfPGD'):])
elif self.attack.startswith('MIA') and self.attack[len('MIA'):].isdigit():
assert 'steps' not in kwargs, "The steps is set by the attack name while " \
"found additional set in kwargs."
self.steps = int(self.attack[len('MIA'):])
else:
self.steps = kwargs.setdefault('steps', 7)
def __call__(self, model):
loss_fn = nn.CrossEntropyLoss(reduction="sum")
if self.attack.startswith('LinfPGD'):
adv = LinfPGDAttack(
model, loss_fn=loss_fn, eps=self.eps / 255,
nb_iter=self.steps,
eps_iter=min(self.eps / 255 * 1.25, self.eps / 255 + 4. / 255) / self.steps,
rand_init=True,
clip_min=0.0, clip_max=1.0,
targeted=False)
elif self.attack == 'none':
adv = None
else:
raise ValueError(f"attack: {self.attack}")
return adv