-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathVOS_evaluate.py
451 lines (391 loc) · 21.8 KB
/
VOS_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import numpy as np
import sys
import os
import pickle
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as trn
import torchvision.datasets as dset
import torch.nn.functional as F
from models.wrn import WideResNet
# from models.densenet import DenseNet3
# from models.wrn_godin import WideResNet
from models.densenet_godin import DenseNet3
from skimage.filters import gaussian as gblur
from PIL import Image as PILImage
from utilsood.display_results import show_performance, get_measures, print_measures, print_measures_with_std
import utilsood.score_calculation as lib
from utilsood.run_knn import run_knn_func
from utilsood.vim import get_vim
from sklearn.svm import OneClassSVM
# go through rigamaroo to do ...utils.display_results import show_performance
if __package__ is None:
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
def get_SVM_score(ood_loader, clf, in_score, out_as_pos):
start = True
for data, _ in ood_loader:
x = data.numpy()
if start:
X = x
start = False
else:
X = np.concatenate((X, x))
X = X.reshape((X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
out_score = clf.predict(X)
for i in range(len(out_score)):
if out_score[i] == -1:
out_score[i] = 1
else:
out_score[i] = 0
if out_as_pos: # OE's defines out samples as positive
measures = get_measures(out_score, in_score)
else:
measures = get_measures(-in_score, -out_score)
auroc = np.mean(measures[0])
aupr = np.mean(measures[1])
fpr = np.mean((measures[2]))
print_measures(auroc, aupr)
return auroc, aupr, fpr
def get_other_score(in_score, out_score, out_as_pos):
print("inscore shape", in_score.shape)
print("out_score shape", out_score.shape)
if out_as_pos: # OE's defines out samples as positive
measures = get_measures(out_score, in_score)
else:
measures = get_measures(-in_score, -out_score)
auroc = np.mean(measures[0])
aupr = np.mean(measures[1])
fpr = np.mean((measures[2]))
print_measures(auroc, aupr)
return auroc, aupr, fpr
def get_ood_scores(user_class, test_bs,use_xent,score,T, ood_num_examples, net, to_np,concat, loader, in_dist=False):
_score = []
_right_score = []
_wrong_score = []
#print("ood_num_examples", ood_num_examples)
with torch.no_grad():
for batch_idx, (data, target) in enumerate(loader):
if batch_idx >= ood_num_examples // test_bs and in_dist is False and batch_idx > 0:
break
data = data.cuda()
output = net(data)
#print("output shape", output.shape)
output = output[:, user_class]
smax = to_np(F.softmax(output, dim=1))
if use_xent:
_score.append(to_np((output.mean(1) - torch.logsumexp(output, dim=1))))
else:
if score == 'energy':
_score.append(-to_np((T * torch.logsumexp(output / T, dim=1))))
else: # original MSP and Mahalanobis (but Mahalanobis won't need this returned)
_score.append(-np.max(smax, axis=1))
if in_dist:
preds = np.argmax(smax, axis=1)
targets = target.numpy().squeeze()
right_indices = preds == targets
wrong_indices = np.invert(right_indices)
if use_xent:
_right_score.append(to_np((output.mean(1) - torch.logsumexp(output, dim=1)))[right_indices])
_wrong_score.append(to_np((output.mean(1) - torch.logsumexp(output, dim=1)))[wrong_indices])
else:
_right_score.append(-np.max(smax[right_indices], axis=1))
_wrong_score.append(-np.max(smax[wrong_indices], axis=1))
if in_dist:
return concat(_score).copy(), concat(_right_score).copy(), concat(_wrong_score).copy()
else:
return concat(_score)[:ood_num_examples].copy()
def VOS_evaluate(args, out_as_pos,num_to_avg, use_xent, method_name, score,test_bs,T,noise, net, test_loader, train_loader, user_class,data_name=None, m_name=None, client_id=None):
# mean and standard deviation ofevaluate channels of CIFAR-10 images
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
num_classes = 10
net.eval()
cudnn.benchmark = True # fire on all cylinders
# /////////////// Detection Prelims ///////////////
ood_num_examples = len(test_loader)*test_bs // 5
#expected_ap = ood_num_examples / (ood_num_examples + len(test_loader))
concat = lambda x: np.concatenate(x, axis=0)
to_np = lambda x: x.data.cpu().numpy()
if score == 'Odin':
# separated because no grad is not applied
in_score, right_score, wrong_score = lib.get_ood_scores_odin(test_loader, net, test_bs, ood_num_examples,
T, noise, in_dist=True)
sample_mean = 0
precision = 0
count = 0
num_batches = 0
elif score == 'M':
from torch.autograd import Variable
_, right_score, wrong_score = get_ood_scores(user_class, test_bs,use_xent,score,T, ood_num_examples, net, to_np,concat, test_loader, in_dist=True)
num_batches = ood_num_examples // test_bs
temp_x = torch.rand(2, 3, 32, 32)
temp_x = Variable(temp_x)
temp_x = temp_x.cuda()
temp_list = net.feature_list(temp_x)[1]
num_output = len(temp_list)
feature_list = np.empty(num_output)
count = 0
for out in temp_list:
feature_list[count] = out.size(1)
count += 1
print('get sample mean and covariance', count)
sample_mean, precision = lib.sample_estimator(net, num_classes, feature_list, train_loader)
in_score = lib.get_Mahalanobis_score(net, test_loader, num_classes, sample_mean, precision, count - 1,
noise,
num_batches, in_dist=True)
print(in_score[-3:], in_score[-103:-100])
elif score == 'SVM':
print("score", score)
start = True
#transform training data from numpy to tensor
for data, _ in train_loader:
x = data.numpy()
if start:
X = x
start = False
else:
X = np.concatenate((X, x))
X = X.reshape((X.shape[0], X.shape[1]*X.shape[2]*X.shape[3]))
clf = OneClassSVM(gamma='auto').fit(X)
start = True
# transform test data from numpy to tensor
for data, _ in test_loader:
x = data.numpy()
if start:
X = x
start = False
else:
X = np.concatenate((X, x))
X = X.reshape((X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
in_score = clf.predict(X)
for i in range(len(in_score)):
if in_score[i] == -1:
in_score[i] = 1
else:
in_score[i] = 0
else:
in_score, right_score, wrong_score = get_ood_scores(user_class, test_bs,use_xent,score,T, ood_num_examples, net, to_np,concat, test_loader, in_dist=True)
sample_mean = 0
precision = 0
count = 0
num_batches = 0
#num_right = len(right_score)
#num_wrong = len(wrong_score)
# /////////////// End Detection Prelims ///////////////
# /////////////// Error Detection ///////////////
#print('\n\nError Detection')
#show_performance(wrong_score, right_score, method_name=method_name)
# /////////////// OOD Detection ///////////////
auroc_list, aupr_list = [], []
# /////////////// Textures ///////////////
if data_name == 'stl':
ood_data = dset.ImageFolder(root="dataset/dtd/images",
transform=trn.Compose([trn.Resize(96), trn.CenterCrop(96),
trn.ToTensor(), trn.Normalize(mean, std)]))
elif data_name in ['DomainNet', 'ImageNet']:
ood_data = dset.ImageFolder(root="dataset/dtd/images",
transform=trn.Compose([trn.Resize(256), trn.CenterCrop(256),
trn.ToTensor(), trn.Normalize(mean, std)]))
else:
ood_data = dset.ImageFolder(root="dataset/dtd/images",
transform=trn.Compose([trn.Resize(32), trn.CenterCrop(32),
trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=4, pin_memory=True)
print('\n\nTexture Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
print("score", score)
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs, num_classes, data_name, ['Texture'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
print("score", score)
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['Texture'], args.batch, test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _ = get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
# /////////////// SVHN /////////////// # cropped and no sampling of the test set
# ood_data = dset.ImageFolder(root="dataset/svhn_t",
# transform=trn.Compose(
# [trn.Resize(32),
# trn.ToTensor(), trn.Normalize(mean, std)]))
# ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
# num_workers=2, pin_memory=True)
# print('\n\nSVHN Detection')
# get_and_print_results(ood_loader)
# /////////////// Places365 ///////////////
if data_name == 'stl':
ood_data = dset.ImageFolder(root="dataset/places365",
transform=trn.Compose([trn.Resize(96), trn.CenterCrop(96),
trn.ToTensor(), trn.Normalize(mean, std)]))
elif data_name in ['DomainNet', 'ImageNet']:
ood_data = dset.ImageFolder(root="dataset/places365",
transform=trn.Compose([trn.Resize(256), trn.CenterCrop(256),
trn.ToTensor(), trn.Normalize(mean, std)]))
else:
ood_data = dset.ImageFolder(root="dataset/places365",
transform=trn.Compose([trn.Resize(32), trn.CenterCrop(32),
trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=2, pin_memory=True)
print('\n\nPlaces365 Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs,
num_classes, data_name, ['Places365'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['Places365'], args.batch,
test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _= get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
# /////////////// LSUN-C ///////////////
if data_name == 'stl':
ood_data = dset.ImageFolder(root="dataset/LSUN_t/LSUN",
transform=trn.Compose([trn.Resize(96), trn.CenterCrop(96), trn.ToTensor(), trn.Normalize(mean, std)]))
elif data_name in ['DomainNet', 'ImageNet']:
ood_data = dset.ImageFolder(root="dataset/LSUN_t/LSUN",
transform=trn.Compose([trn.Resize(256), trn.CenterCrop(256), trn.ToTensor(), trn.Normalize(mean, std)]))
else:
ood_data = dset.ImageFolder(root="dataset/LSUN_t/LSUN",
transform=trn.Compose([trn.Resize(32), trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=1, pin_memory=True)
print('\n\nLSUN_C Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs,
num_classes, data_name, ['LSUN_C'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['LSUN_C'], args.batch,
test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _= get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
# /////////////// LSUN-R ///////////////
if data_name == 'stl':
ood_data = dset.ImageFolder(root="dataset/LSUN_resize",
transform=trn.Compose([trn.Resize(96), trn.CenterCrop(96), trn.ToTensor(), trn.Normalize(mean, std)]))
elif data_name in ['DomainNet', 'ImageNet']:
ood_data = dset.ImageFolder(root="dataset/LSUN_resize",
transform=trn.Compose([trn.Resize(256), trn.CenterCrop(256), trn.ToTensor(), trn.Normalize(mean, std)]))
else:
ood_data = dset.ImageFolder(root="dataset/LSUN_resize",
transform=trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=1, pin_memory=True)
print('\n\nLSUN_Resize Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs,
num_classes, data_name, ['LSUN_R'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['LSUN_R'], args.batch,
test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _= get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
# /////////////// iSUN ///////////////
if data_name == 'stl':
ood_data = dset.ImageFolder(root="dataset/iSUN",
transform=trn.Compose([trn.Resize(96), trn.CenterCrop(96), trn.ToTensor(), trn.Normalize(mean, std)]))
elif data_name in ['DomainNet', 'ImageNet']:
ood_data = dset.ImageFolder(root="dataset/iSUN",
transform=trn.Compose([trn.Resize(256), trn.CenterCrop(256), trn.ToTensor(), trn.Normalize(mean, std)]))
else:
ood_data = dset.ImageFolder(root="dataset/iSUN",
transform=trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=1, pin_memory=True)
print('\n\niSUN Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs,
num_classes, data_name, ['iSUN'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['iSUN'], args.batch,
test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _= get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
#///////////CIFAR100//////////////////
#mean and standard deviation of channels of CIFAR-100 images
if args.data == 'Cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
test_transform = trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)])
ood_data = dset.CIFAR100('dataset/cifar10', train=False, transform=test_transform)
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=test_bs, shuffle=True,
num_workers=1, pin_memory=True)
print('\n\nCIFAR100 Detection')
if score == 'SVM':
auroc, aupr, _ = get_SVM_score(ood_loader, clf, in_score, out_as_pos)
elif score == 'KNN':
scores_in, all_score_ood = run_knn_func(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, args.batch, test_bs,
num_classes, data_name, ['Cifar100'], m_name)
auroc, aupr, _ = get_other_score(scores_in, all_score_ood, out_as_pos)
elif score == 'vim':
scores_in, score_out = get_vim(client_id, args.loss_weight, train_loader, test_loader, ood_loader, net, data_name, ['Cifar100'],
args.batch,
test_bs, num_classes, m_name)
auroc, aupr, _ = get_other_score(scores_in, score_out, out_as_pos)
else:
auroc, aupr, _ = get_and_print_results(user_class, use_xent, method_name, score, test_bs, T, out_as_pos,
noise, to_np, concat,
net, ood_num_examples, num_classes, sample_mean, precision, count,
num_batches, in_score, ood_loader, num_to_avg)
auroc_list.append(auroc);
aupr_list.append(aupr);
# /////////////// Mean Results ///////////////
print('\n\nMean Test Results!!!!!')
print_measures(np.mean(auroc_list), np.mean(aupr_list), method_name=method_name)
return np.mean(auroc_list), np.mean(aupr_list), auroc_list, aupr_list
def get_and_print_results(user_class, use_xent, method_name, score, test_bs,T,out_as_pos, noise, to_np, concat,net,ood_num_examples,num_classes,sample_mean, precision, count,num_batches,in_score, ood_loader, num_to_avg):
aurocs, auprs, fprs = [], [], []
for _ in range(num_to_avg):
if score == 'Odin':
out_score = lib.get_ood_scores_odin(ood_loader, net, test_bs, ood_num_examples, T, noise)
elif score == 'M':
out_score = lib.get_Mahalanobis_score(net, ood_loader, num_classes, sample_mean, precision, count - 1,
noise, num_batches)
else:
out_score = get_ood_scores(user_class, test_bs,use_xent,score,T, ood_num_examples, net, to_np,concat, ood_loader)
if out_as_pos: # OE's defines out samples as positive
measures = get_measures(out_score, in_score)
else:
measures = get_measures(-in_score, -out_score)
aurocs.append(measures[0]);
auprs.append(measures[1]);
fprs.append(measures[2])
print(in_score[:3], out_score[:3])
auroc = np.mean(aurocs)
aupr = np.mean(auprs)
fpr = np.mean(fprs)
if num_to_avg >= 5:
print_measures_with_std(aurocs, auprs, method_name)
else:
print_measures(auroc, aupr, method_name)
return auroc, aupr, fpr