-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
49 lines (35 loc) · 1.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import random
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.utils as vutils
from torchvision import transforms
from data import EPIC_Kitchens
def set_seed(seed):
# Reproducibility
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
random.seed(seed)
np.random.seed(seed)
def get_data_loaders(config):
csv_root = config.csv_root
train_csv = os.path.join(csv_root, 'train.csv')
val_csv = os.path.join(csv_root, 'val.csv')
test_csv = os.path.join(csv_root, 'test.csv')
data_root = config.data_root
batch_size = config.batch_size
num_frames = config.num_frames
num_workers = config.num_workers
train_loader = get_data_loader(train_csv, data_root, batch_size, True, num_frames, num_workers)
val_loader = get_data_loader(val_csv, data_root, batch_size, False, num_frames, num_workers)
test_loader = get_data_loader(test_csv, data_root, batch_size, False, num_frames, num_workers)
return train_loader, val_loader, test_loader
def get_data_loader(csv_path, data_root, batch_size, train, num_frames=8, num_workers=4):
dataset = EPIC_Kitchens(csv_path, data_root, train, num_frames)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=train,
drop_last=True, num_workers=num_workers)
return loader