-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_blind_noise.py
144 lines (112 loc) · 4.94 KB
/
test_blind_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Training script for ImageNet
Copyright (c) Wei YANG, 2017
"""
from __future__ import print_function
import argparse
import os
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import matplotlib.pyplot as plt
from models import HyperRes, NoiseNet
from utils import AverageMeter
from utils.DataUtils import CommonTools
from utils.DataUtils.CommonTools import calculate_psnr, postProcessForStats, saveImage, calculate_ssim
from utils.DataUtils.TrainLoader import NoisyDataset
parser = argparse.ArgumentParser(description='PyTorch ImageNet Testing')
parser.add_argument('-d', '--data', metavar='DIR',
help='path to dataset')
parser.add_argument('--weights', required=True, type=str, metavar='PATH',
help='path to latest checkpoint')
parser.add_argument('--meta_blocks', type=int, default=16,
help='Number of Meta Blocks')
parser.add_argument('--device', type=str, default='cpu',
help='Device to run on,[cpu,cuda..]')
parser.add_argument('--levels', type=int, nargs='+',
default=[15], help='input resolutions.')
def loadNoiseNet(device):
noise_model = NoiseNet().to(device)
noise_model.load_state_dict(torch.load('pre_trained/noise_detect.pth', map_location=device))
return noise_model
def main():
global args, best_prec1
args = parser.parse_args()
# Create model
model = HyperRes(meta_blocks=args.meta_blocks, level=args.levels, device=args.device,
gray=False, norm_factor=255).to(args.device)
noise_model = loadNoiseNet(args.device)
# Load weights
if not os.path.isfile(args.weights):
print("=> no checkpoint found at '{}'".format(args.weights))
exit()
print("=> loading weights '{}'".format(args.weights))
checkpoint = torch.load(args.weights, map_location=args.device)
model.load_state_dict(checkpoint['state_dict'])
CommonTools.set_random_seed(42)
torch.backends.cudnn.benckmark = True
# Data loading code
val_loader = NoisyDataset(
args.data,
cor_lvls=args.levels,
phase='test',
interp=False,
lr_prefix='n',
)
val_loader = torch.utils.data.DataLoader(
val_loader,
batch_size=1, shuffle=False,
num_workers=1, pin_memory=True)
psnr_avg = validate(val_loader, model, noise_model)
def validate(val_loader, model: HyperRes, noise_model: NoiseNet):
print("Validation:")
sig_loss = [AverageMeter() for _ in range(len(args.levels))]
ssim_loss = [AverageMeter() for _ in range(len(args.levels))]
os.makedirs('blindNoise', exist_ok=True)
model.eval()
noise_model.eval()
with torch.no_grad():
for i, data in enumerate(val_loader):
target = data['target'].to(args.device)
images = [x.to(args.device) for x in data['image']]
print("=====================")
print(i)
print(args.levels)
model.setLevel(args.levels)
output = model(images)
for j in range(len(args.levels)):
# Measure PSNR
for out_idx, out in enumerate(output[j]):
imgs = postProcessForStats([target[out_idx], out, images[j]])
trg, out, noise = imgs
plt.imsave("blindNoise/{}_gt.png".format(i), trg)
plt.imsave("blindNoise/{}_{}_noise.png".format(i, args.levels[j]), noise)
plt.imsave("blindNoise/{}_{}_semi.png".format(i, args.levels[j]), out)
psnr = calculate_psnr(out, trg, False)
ssim = calculate_ssim(out, trg, False)
sig_loss[j].update(psnr)
ssim_loss[j].update(ssim)
print("\t{:.3f}:\tPSNR:\t{:.3f}| SSIM\t{:.3f}".format(args.levels[j], psnr, ssim))
# Blind
new_sigmas = [noise_model(image) for image in images]
model.setLevel(new_sigmas)
output = model(images)
new_sigmas = [x.detach().cpu().numpy()[0][0] for x in new_sigmas]
print(new_sigmas)
for j in range(len(new_sigmas)):
# Measure PSNR
for out_idx, out in enumerate(output[j]):
imgs = postProcessForStats([target[out_idx], out])
trg, out = imgs
plt.imsave("blindNoise/{:}_{:.3f}.png".format(i, new_sigmas[j]), out)
psnr = calculate_psnr(out, trg, False)
ssim = calculate_ssim(out, trg, False)
sig_loss[j].update(psnr)
ssim_loss[j].update(ssim)
print("\t{:.3f}:\tPSNR:\t{:.3f} SSIM\t{:.3f}".format(new_sigmas[j], psnr, ssim))
model.train()
return {s: (t.avg, ssim.avg) for s, t, ssim in zip(args.levels, sig_loss, ssim_loss)}
if __name__ == '__main__':
main()