forked from hx173149/C3D-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_tfrecords.py
288 lines (216 loc) · 10.5 KB
/
generate_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Add openpose to the path and import PoseEstimation
import sys
sys.path.append('./openpose')
import json
import os
import activities
import cv2
import numpy as np
import tensorflow as tf
from tqdm import tqdm
import random
import argparse
from openpose.common import estimate_pose, draw_humans
from openpose.networks import get_network
import c3d_model
activities_list = activities.activities
samples_number = activities.samples_number
# Openpose variables
model = 'mobilenet'
input_width = 368
input_height = 368
stage_level = 6
input_node = tf.placeholder(tf.float32, shape=(1, input_height, input_width, c3d_model.CHANNELS), name = 'image')
net, _, last_layer = get_network(model, input_node, None)
# Decode data and return images and label from tfrecords
def _parse_function(serialized_example):
# Prepare feature list; read encoded JPG images as bytes
features = dict()
features["class_label"] = tf.FixedLenFeature((), tf.int64)
for i in range(c3d_model.NUM_FRAMES_PER_CLIP):
features["frames/{:02d}".format(i)] = tf.FixedLenFeature((), tf.string)
# Parse into tensors
parsed_features = tf.parse_single_example(serialized_example, features)
# Decode the encoded JPG images
images = []
for i in range(c3d_model.NUM_FRAMES_PER_CLIP):
images.append(tf.image.decode_jpeg(parsed_features["frames/{:02d}".format(i)]))
# Pack the frames into one big tensor of shape (N,H,W,3)
images = tf.stack(images)
label = tf.cast(parsed_features['class_label'], tf.int64)
return images, label
# Create list of videos for training and testing
def create_files_list(json_dir, video_path):
files = os.listdir(json_dir)
train_list = []
test_list = []
for f in files:
with open(json_dir + f) as file:
Json_dict = json.load(file)
for video in list(Json_dict.keys()):
for activity in list(Json_dict[video]):
if (activity['label'] in activities_list):
segment = activity['milliseconds']
if 'train' in f:
train_list.append([activity['label'], video_path + video, segment, False])
else:
test_list.append([activity['label'], video_path + video, segment, False])
return train_list, test_list
# Given a list of videos, augment in order to have n samples in each category
def augment_list(list):
final_list = []
for a in activities_list:
videos = [v for v in list if v[0] == a]
oposite_video = []
activity = a
if (activity[0] == 'r'):
activity = 'l' + activity[1:]
elif (activity[0] == 'l'):
activity = 'r' + activity[1:]
if (activity[0] == 'r' or activity[0] == 'l'):
oposite_video = [[a,v[1],v[2],True] for v in list if v[0] == activity]
augmented_list = videos + oposite_video
# Extract n samples from each one
augmented_list = random.sample(augmented_list, min(samples_number, len(augmented_list)))
while len(augmented_list) < samples_number:
samples = min(samples_number - len(augmented_list), len(augmented_list))
augmented_list = augmented_list + random.sample(augmented_list, samples)
final_list = final_list + augmented_list
return final_list
# Create tfrecord from list of data
def create_tf_records(file_list, dest, name):
# Create a session for running Ops on the Graph.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
# Initialize all variables
sess.run(tf.global_variables_initializer())
# Load pretrained weights
s = '%dx%d' % (input_node.shape[2], input_node.shape[1])
ckpts = 'model/mobilenet_' + s + '/model-release'
variables = tf.contrib.slim.get_variables_to_restore()
loader = tf.train.Saver(variables)
loader.restore(sess, ckpts)
# Make the graph read-only and avoid memory leak
# sess.graph.finalize()
# Specify the number of files in each tfrecord
files_per_tfrecord = len(file_list)
number_files = int(len(file_list)/files_per_tfrecord)
for j in range(number_files):
print('File', j+1, '/', number_files)
train_filename = dest + name + '_' + str(j) + '.tfrecords' # address to save the TFRecords file
sub_list = file_list[j*files_per_tfrecord:(j+1)*files_per_tfrecord]
# open the TFRecords file
with tf.python_io.TFRecordWriter(train_filename) as writer:
for i in tqdm(range(len(sub_list))):
file = sub_list[i]
# Get frames from the video
frames = get_frames(file[1], c3d_model.NUM_FRAMES_PER_CLIP, file[2], c3d_model.CROP_SIZE, file[3], sess)
label = activities_list[file[0]]
# Generate poses for the frames
poses = np.zeros(shape=(c3d_model.NUM_FRAMES_PER_CLIP, c3d_model.CROP_SIZE, c3d_model.CROP_SIZE, c3d_model.CROP_SIZE), dtype=float)
try:
for z in range(len(frames)):
image = cv2.resize(frames[z], dsize=(input_height, input_width), interpolation=cv2.INTER_CUBIC)
pafMat, heatMat = sess.run(
[
net.get_output(name=last_layer.format(stage=stage_level, aux=1)),
net.get_output(name=last_layer.format(stage=stage_level, aux=2))
], feed_dict={'image:0': [image]}
)
heatMat, pafMat = heatMat[0], pafMat[0]
humans = estimate_pose(heatMat, pafMat)
pose_image = np.zeros(tuple(image.shape), dtype=np.uint8)
pose_image = draw_humans(pose_image, humans)
# cv2.imwrite('teste.jpg', pose_image)
img = cv2.resize(pose_image, dsize=(c3d_model.CROP_SIZE, c3d_model.CROP_SIZE), interpolation=cv2.INTER_CUBIC)
poses[z, :, :, :] = img
# Create the dictionary with the data
features = {}
features['num_frames'] = _int64_feature(poses.shape[0])
features['height'] = _int64_feature(poses.shape[1])
features['width'] = _int64_feature(poses.shape[2])
features['channels'] = _int64_feature(poses.shape[3])
features['class_label'] = _int64_feature(label)
features['class_text'] = _bytes_feature(tf.compat.as_bytes(file[0]))
features['filename'] = _bytes_feature(tf.compat.as_bytes(file[1].split('/')[1]))
# Compress the frames using JPG and store in as bytes in:
# 'frames/01', 'frames/02', ...
for j in range(len(poses)):
ret, buffer = cv2.imencode(".jpg", poses[j])
features["frames/{:02d}".format(j)] = _bytes_feature(tf.compat.as_bytes(buffer.tobytes()))
# Wrap the data as Features
feature = tf.train.Features(feature=features)
# Create an example protocol buffer
example = tf.train.Example(features=feature)
# Serialize the data
serialized = example.SerializeToString()
# Write to the tfrecord
writer.write(serialized)
except:
print('Error exporting frames from file!')
print(file)
sys.stdout.flush()
# Wrapper for inserting int64 features into Example proto
def _int64_feature(value):
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
# Wrapper for inserting bytes features into Example proto
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# Wrapper for inserting bytes features into Example proto
def _bytes_list_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))
# Extract frames from the videos
def get_frames(video_path, frames_per_step, segment, im_size, flip, sess):
# Load video and acquire its parameters usingopencv
video = cv2.VideoCapture(video_path)
fps = (video.get(cv2.CAP_PROP_FPS))
video.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
max_len = video.get(cv2.CAP_PROP_POS_MSEC)
# Check segment consistency
if (max_len < segment[1]):
segment[1] = max_len
# Define start frame
central_frame = (np.linspace(segment[0], segment[1], num=3)) / 1000 * fps
start_frame = central_frame[1] - frames_per_step / 2
# Matrix for the frames
# frames = np.zeros(shape=(frames_per_step, im_size, im_size, 3), dtype=float)
frames = []
for z in range(frames_per_step):
frame = start_frame + z
video.set(1, frame)
_, img = video.read()
if flip:
img = cv2.flip(img, 1)
frames.append(img)
return frames
# Main function
def main(json, videos, dest):
print('\nCollecting train and test list of files')
train_list, test_list = create_files_list(json, videos)
print('\nAugmenting train list with', samples_number, 'samples per activity')
train_list = augment_list(train_list)
print('Augmented train size:', len(train_list))
# Shuffle data
random.shuffle(train_list)
random.shuffle(test_list)
# Uncomment to generate a small sample of tfrecords
# train_list = train_list[:20]
# test_list = test_list[:20]
# Make test_list divisible by 100
test_list = test_list[0:int(len(test_list)/100)*100]
print('\nTrain size:', len(train_list))
print('Test size: ', len(test_list))
if not os.path.exists(dest):
os.makedirs(dest)
print('\nCreating tfrecords for training')
create_tf_records(train_list, dest, 'train')
print('\nCreating tfrecords for testing')
create_tf_records(test_list, dest, 'test')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Create tfrecords from pose videos')
parser.add_argument('--json', dest='json', type=str, default='json/', help='path of the json files')
parser.add_argument('--videos', dest='videos', type=str, default='videos/', help='path of the video files')
parser.add_argument("--dest", dest="dest", type=str, default="tfrecords/", help="path to the tfrecord files")
args = parser.parse_args()
main(args.json, args.videos, args.dest)