-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHMM.m
172 lines (136 loc) · 2.5 KB
/
HMM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
% Vinay
clear all;
clc;
run data.m;
T = 1000;
[N,N] = size(A);
[N,M] = size(B);
%% Problem 1 - The evaluation problem
alpha = zeros(T,N);
lenobs = length(obs);
for i=1:N
alpha(1,i) = Pi(i)*B(i,obs(1));
end
for t=1:lenobs-1
for j=1:N
sum = 0;
for i=1:N
temp = alpha(t,i)*A(i,j);
sum = sum+temp;
end
alpha(t+1,j) = sum * B(j,obs(t+1));
end
end
lenobs = int16(fix(lenobs));
seq = 0;
for i=1:N
seq = seq+ alpha(lenobs,i); % seq denotes the probability belongs to the given HMM
end
beta = zeros(lenobs,N);
for i=1:N
beta(lenobs,i) = 1;
end
for t=lenobs-1:-1:1
sum = 0;
for j=1:N
for i=1:N
sum=sum+A(j,i)*B(i,obs(t+1))*beta(t+1,i);
end
beta(t,j)=sum; % beta
end
end
%% Problem 2 - The uncovering problem
delta = zeros(T,N);
gamma = zeros(T,N);
for i=1:N
delta(1,i) = Pi(i) * B(i,obs(1));
gamma(1,i) = 0;
end
for i=2:lenobs
for j=1:N
maxi = -1;
si = -1;
for k=1:N
if(delta(i-1,k)*A(k,j) > maxi)
maxi = max(maxi,delta(i-1,k)*A(k,j));
si = k;
end
end
delta(i,j) = maxi*B(j,obs(i));
gamma(i,j) = si;
end
end
max_s = -1;
max_val = -1;
for i=1:N
if(delta(lenobs,i)>max_val)
max_val = delta(lenobs,i);
max_s = i;
end
end
opt_seq = zeros(lenobs,1);
opt_seq(1) = max_s;
for i=lenobs:-1:1
opt_seq(i)=gamma(i,max_s); %opt_seq represents the correct state sequence for the problem
max_s=gamma(i,max_s);
end
%% Problem 3 - The Re-estimation problem
temp = zeros(N,N);
gamma = zeros(lenobs,N);
epsilon = zeros(lenobs,N,N);
for t=lenobs-1:-1:1
for i=1:N
answer = 0;
for j=1:N
answer = alpha(t,i)*A(i,j) * B(j,obs(t+1)) * beta(t+1,j);
answer2 = 0;
for i_n=1:N
sum1=0;
for j_n=1:N
sum1=sum1+alpha(t,i_n) * A(i_n,j_n) * B(j_n,obs(t+1)) * beta(t+1,j_n);
end
answer2 = answer2+sum1;
end
answer = answer/answer2;
epsilon(t,i,j) = answer;
end
end
end
for t=lenobs-1:-1:1
for i=1:N
sum = 0;
for j=1:N
sum = sum+ epsilon(t,i,j);
end
gamma(t,i) = sum;
end
end
Pi_bar = zeros(1,N); % Optimal Pi
for i=1:N
Pi_bar(i) = gamma(1,i);
end
A_bar = zeros(N,N); % Optimal A
for i=1:N
for j=1:N
num = 0;den=0;
for t=1:lenobs-1
num = num + epsilon(t,i,j);
den = den+gamma(t,i);
end
A_bar(i,j) = num/den;
end
end
B_bar = zeros(N,M); %Optimal B
for j=1:N
for k = 1:M
num = 0; den = 0;
for t=1:lenobs-1
if obs(t)==k
num = num + gamma(t,j);
end
den = den+gamma(t,j);
end
B_bar(j,k) = num/den;
end
end
clear answer answer2 den i i_n j j_n k lenobs max_s max_val maxi num si sum sum1 t temp;