forked from swojas/RTSLD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
57 lines (48 loc) · 1.61 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import mediapipe as mp
import joblib
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(min_detection_confidence=0.80, min_tracking_confidence=0.80)
def data_clean(landmark):
data = landmark[0]
try:
data = str(data)
data = data.strip().split('\n')
garbage = ['landmark {', ' visibility: 0.0', ' presence: 0.0', '}']
without_garbage = []
for i in data:
if i not in garbage:
without_garbage.append(i)
clean = []
for i in without_garbage:
i = i.strip()
clean.append(i[2:])
for i in range(0, len(clean)):
clean[i] = float(clean[i])
return([clean])
except:
return(np.zeros([1,63], dtype=int)[0])
def detection(success, image):
letter=''
while True:
image = cv2.flip(image, 1)
if not success:
break
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = hands.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cleaned_landmark = data_clean(results.multi_hand_landmarks)
if cleaned_landmark:
clf = joblib.load('new_ASL_model.pkl')
y_pred = clf.predict(cleaned_landmark)
letter = str(y_pred[0])
image = cv2.putText(image, str(y_pred[0]), (50,150), cv2.FONT_HERSHEY_SIMPLEX, 3, (0,0,255), 2, cv2.LINE_AA)
return image,letter