-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncoder.py
76 lines (50 loc) · 2.49 KB
/
Encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from __future__ import print_function
import torch as t
import torch.nn as nn
from utils import *
class Encoder_block(nn.Module):
def __init__(self,args,d_model):
super(Encoder_block,self).__init__()
self.pos_enc = PositionalEncoder(d_model)
self.conv_model = Convol_block(args,d_model)
if args.layernorm == 'cus':
self.norm1 = Norm(d_model)
self.norm2 = Norm(d_model)
elif args.layernorm == 'inblt':
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.multihead_attn = MultiHeadAttention(args.attention_heads,d_model)
self.feedfwd = FeedForward(d_model)
def forward(self,x_embedded,mask = None,blow_up ='N'):
# input x_embedded coming as (batchsize,maxseqlen,d_model)
#1. Positional encoding(refer block diagram)
x_residue = self.pos_enc(x_embedded,blow_up)
#2.Convolution Block (refer block diagram)
# Param size :- batchsize,maxseqlen,d_model==> batchsize,maxseqlen,d_model
x_embedded = self.conv_model(x_residue)
#residual connection
# Param size :- batchsize,maxseqlen,d_model ==> batchsize,maxseqlen,d_model
x_embedded = x_residue + x_embedded
#3. Self multi attention block (refer block diagram)
x_residue = x_embedded
#Normalize the input
# Param size :- batchsize,maxseqlen,d_model ==> batchsize,maxseqlen,d_model
x_embedded = self.norm1(x_embedded)
#calling multi attention
#Param size :- batchsize, maxseqlen, d_model == > batchsize, maxseqlen, d_model
x_attended = self.multihead_attn(x_embedded,x_embedded,x_embedded,mask)
# residual connection
# Param size :- batchsize,maxseqlen,d_model ==> batchsize,maxseqlen,d_model
x_attended = x_attended + x_residue
#4.Feed Forward block (refer block diagram)
x_residue =x_attended
#Normalize the input
# Param size :- batchsize,maxseqlen,d_model ==> batchsize,maxseqlen,d_model
x_attended = self.norm2(x_attended)
#calling Feed forward
#Param size :- batchsize, maxseqlen, d_model == > batchsize, maxseqlen, d_model
x_attended = self.feedfwd(x_attended)
# residual connection
# Param size :- batchsize,maxseqlen,d_model ==> batchsize,maxseqlen,d_model
x_attended = x_attended + x_residue
return x_attended