-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·522 lines (464 loc) · 19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import argparse
import logging
import os
import os.path as osp
import random
import shutil
import subprocess
import time
import json
from ast import literal_eval
from statistics import mean
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import yaml
from torch.functional import Tensor
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from datasets import build_datasets
from model import build_model
from utils import EasyConfig
from test import Tester
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def get_git_head_hash():
try:
result = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
git_hash = result.stdout.strip()
return git_hash
else:
error_message = result.stderr.strip()
return None
except Exception as e:
return None
class Trainer(object):
def __init__(self, cfg: EasyConfig) -> None:
# hyper-parameters
assert cfg.device == cfg.model.device
self.device = torch.device(cfg.device)
self.ncols = getattr(cfg, "ncols", None) # for tqdm
self.num_epoch = cfg.epochs
self.print_freq = cfg.print_freq
self.resume = False
if cfg.seed is not None:
setup_seed(cfg.seed)
if cfg.resume:
assert osp.exists(cfg.checkpoint_path), f"FileNotFound: {cfg.checkpoint_path}"
self.resume = True
self.checkpoint_path = cfg.checkpoint_path
self.checkpoint = torch.load(cfg.checkpoint_path, map_location=self.device)
# model saving
self.save_root = getattr(
cfg,
"save_root",
f'Experiments/{cfg.save_comment}_{time.strftime("%Y%m%d%H%M%S", time.localtime())}'
)
if cfg.resume:
self.save_root = osp.join(self.save_root, f'resume_from_{self.checkpoint["epoch"]}')
self.saved_models = [
{"save_path": "", "performance": -float('inf')}
] * cfg.save_top_n
self.assignments = cfg.assignments
# logs
self.log_path = osp.join(self.save_root, cfg.log_dir)
if not osp.exists(self.save_root):
os.makedirs(self.save_root)
if not osp.exists(self.log_path):
os.makedirs(self.log_path)
self.logger = SummaryWriter(log_dir=self.log_path) # tensorboard logger
self._init_train_logger() # global Logging.logger
self._record_cfg(cfg)
# stat
self.global_step = 0
# init functions
self.model = self._build_model(cfg.model)
self.train_loader, self.val_loader = self._build_dataloaders(cfg.data)
self.optimizer = self._build_optimizer(cfg.optimizer)
self.scheduler = self._build_scheduler(cfg.scheduler)
def _init_train_logger(self, log_name: str = "train") -> None:
logger = logging.getLogger(log_name)
logger.setLevel(logging.DEBUG)
# set two handlers
fileHandler = logging.FileHandler(
osp.join(self.log_path, f"{log_name}.log"), mode='w')
fileHandler.setLevel(logging.DEBUG)
consoleHandler = logging.StreamHandler()
consoleHandler.setLevel(logging.DEBUG)
# set formatter
formatter = logging.Formatter(
'[%(asctime)s] {%(filename)s} %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
consoleHandler.setFormatter(formatter)
fileHandler.setFormatter(formatter)
# add
logger.addHandler(fileHandler)
logger.addHandler(consoleHandler)
logging.root = logger
def _init_cfg_logger(self) -> None:
logger = logging.getLogger("cfg")
logger.setLevel(logging.DEBUG)
# set two handlers
fileHandler = logging.FileHandler(
osp.join(self.log_path, "config.log"), mode='w')
fileHandler.setLevel(logging.DEBUG)
consoleHandler = logging.StreamHandler()
consoleHandler.setLevel(logging.DEBUG)
# set formatter
formatter = logging.Formatter('%(message)s')
consoleHandler.setFormatter(formatter)
fileHandler.setFormatter(formatter)
# add
logger.addHandler(fileHandler)
logger.addHandler(consoleHandler)
return logger
def _record_cfg(self, cfg: EasyConfig, display: bool = True) -> None:
# save cfg to yaml file
cfg_dir = osp.join(self.save_root, "config")
os.makedirs(cfg_dir, exist_ok=True)
with open(osp.join(cfg_dir, "train_config.yaml"), "w") as wf:
wf.write(yaml.dump(cfg.dict(), indent=2, allow_unicode=True))
git_hash = get_git_head_hash()
if git_hash is not None:
logging.info(f"Current git version: {git_hash}")
else:
logging.warning("No git repository detected")
if display:
def display_cfg(cfg: Dict, logger: logging.Logger):
for k, v in cfg.items():
if isinstance(v, dict):
logger.info(f"\n{k}")
display_cfg(v, logger)
else:
logger.info(f"{k:<20s}: {v}")
logger = self._init_cfg_logger()
display_cfg(cfg, logger)
logger.info('\n')
def _build_optimizer(self, optim_cfg: EasyConfig) -> optim.Optimizer:
optim_params = self.model.parameters()
if optim_cfg.name.lower() == "adam":
optimizer = optim.Adam(
optim_params,
lr=optim_cfg.lr,
weight_decay=optim_cfg.weight_decay,
)
elif optim_cfg.name.lower() == "adamw":
optimizer = optim.AdamW(
optim_params,
lr=optim_cfg.lr,
weight_decay=optim_cfg.weight_decay,
)
else:
raise NotImplementedError(f"No such optimizer: {optim_cfg.name}")
if self.resume:
optim_state_dict = self.checkpoint["optimizer_state_dict"]
optimizer.load_state_dict(optim_state_dict)
optimizer.zero_grad()
return optimizer
def _build_scheduler(self, sched_cfg: EasyConfig) -> optim.lr_scheduler._LRScheduler:
self.last_epoch = self.checkpoint["epoch"] if self.resume else -1
logging.info(f"Last epoch = {self.last_epoch}")
# adjust learning rate
if sched_cfg.name.lower() == "cosine":
scheduler = optim.lr_scheduler.CosineAnnealingLR(
self.optimizer,
T_max=sched_cfg.t_max,
eta_min=sched_cfg.min_lr,
last_epoch=self.last_epoch,
)
elif sched_cfg.name.lower() == "steplr":
scheduler = optim.lr_scheduler.StepLR(
self.optimizer,
sched_cfg.step_size,
gamma=sched_cfg.step_gamma,
last_epoch=self.last_epoch,
)
else:
raise NotImplementedError(f"No such scheduler: {sched_cfg.name}")
return scheduler
def _build_model(self, model_cfg: EasyConfig) -> nn.Module:
logging.info("Loading model...")
current_model = build_model(model_cfg)
logging.info(current_model)
if self.resume:
# load checkpoint
trained_state_dict = self.checkpoint["model_state_dict"]
model_state_dict = current_model.state_dict()
# check state dict differences
different = Tester._check_state_dict(trained_state_dict, model_state_dict)
if different:
input("State dict inconsistency detected. Press ENTER to continue or Ctrl-C to interrupt")
else:
logging.info("checkpoint state dict is CONSISTENT with model state dict")
model_state_dict.update(trained_state_dict)
current_model.load_state_dict(model_state_dict)
logging.info(f"Loaded model weights from {self.checkpoint_path}")
return current_model.to(self.device)
def _build_dataloaders(self, data_cfg: EasyConfig) -> Tuple[DataLoader, DataLoader]:
logging.info("Preparing dataloaders...")
train_set, val_set, _ = build_datasets(data_cfg)
train_loader = DataLoader(
train_set,
batch_size=data_cfg.train.batch_size,
shuffle=True,
drop_last=True,
pin_memory=False,
collate_fn=train_set.collate_fn,
num_workers=data_cfg.train.num_workers,
)
val_loader = DataLoader(
val_set,
batch_size=data_cfg.val.batch_size,
shuffle=False,
drop_last=False,
pin_memory=False,
collate_fn=val_set.collate_fn,
num_workers=data_cfg.val.num_workers,
)
logging.info(f'Num train samples: {len(train_set)}')
logging.info(f'Num val samples: {len(val_set)}')
return train_loader, val_loader
def _train_log(self, key: str, value: Union[float, int]) -> None:
self.logger.add_scalar(
f"train/{key}", value, global_step=self.global_step)
def _val_log(self, key: str, value: Union[float, int], epoch: int = None) -> None:
if epoch is not None:
self.logger.add_scalar(f"val/{key}", value, global_step=epoch)
else:
self.logger.add_scalar(
f"val/{key}", value, global_step=self.global_step)
def _optimize_one_step(self) -> None:
self.optimizer.step()
self.optimizer.zero_grad()
def _recursive_to_device(self, data: Union[Tensor, list, tuple, dict, Any]):
if isinstance(data, torch.Tensor):
return data.to(self.device)
elif isinstance(data, list):
for i in range(len(data)):
data[i] = self._recursive_to_device(data[i])
return data
elif isinstance(data, tuple):
new_data = []
for i in range(len(data)):
new_data[i] = self._recursive_to_device(data[i])
return tuple(new_data)
elif isinstance(data, dict):
for k, v in data.items():
data[k] = self._recursive_to_device(v)
return data
else:
return data
def _train_one_epoch(self, epoch: int) -> None:
self.model.train()
self.model.criterion.assignments_save = {}
with tqdm(
total=len(self.train_loader),
desc=f"[Epoch {epoch}|{self.num_epoch}]",
ncols=self.ncols
) as progress_bar:
for batch_idx, data_dict in enumerate(self.train_loader, start=1):
data_dict = self._recursive_to_device(data_dict)
loss, loss_dict, _ = self.model(data_dict)
loss.backward()
self._optimize_one_step()
# log
self._train_log("loss", loss.item())
for k, v in loss_dict.items():
self._train_log(k, v.item())
if self.global_step % self.print_freq == 0:
logging.info(
f'{">" * 15} Epoch{epoch} [{batch_idx}|{len(self.train_loader)}] {"<" * 15}'
)
logging.info(f'{"Loss:":<21s} {loss.item():.4f} ')
for k, v in loss_dict.items():
logging.info(f'{k.title() + ":":<21s} {v.item():.4f}')
# postfix string on progress bar
postfix_str = f"loss={loss.item():.2f}"
for k, v in loss_dict.items():
if k[-1].isdigit():
continue
postfix_str += f' {k.title():.5s}={v.item():.2f}'
progress_bar.set_postfix_str(postfix_str, refresh=True)
progress_bar.update()
self.global_step += 1
assignment_savepath = osp.join(self.save_root, "assignment_epoch_"+str(epoch)+".json")
if self.assignments == "dynamic":
with open(assignment_savepath, "w") as wf:
json.dump(self.model.criterion.assignments_save, wf, indent=4)
logging.info(f'Matched results have been saved to {assignment_savepath}')
@torch.no_grad()
def _validate(self, epoch: int) -> float:
self.model.eval()
val_loss = []
val_detailed_loss = {}
with tqdm(
total=len(self.val_loader),
desc=f"Validating Epoch {epoch}",
ncols=self.ncols,
leave=False
) as progress_bar:
for data_dict in self.val_loader:
data_dict = self._recursive_to_device(data_dict)
loss, loss_dict, _ = self.model(data_dict)
val_loss.append(loss.item())
for k, v in loss_dict.items():
if k not in val_detailed_loss.keys():
val_detailed_loss[k] = [v.item()]
else:
val_detailed_loss[k].append(v.item())
progress_bar.update()
# log
self._val_log("loss", mean(val_loss), epoch)
for k, v in val_detailed_loss.items():
self._val_log(k, mean(v), epoch)
logging.info(f'{">" * 15} Epoch {epoch} Validated {"<" * 15}')
logging.info(f'{"Loss:":<21s}: {mean(val_loss):.4f}')
for k, v in val_detailed_loss.items():
logging.info(f'{k.title() + ":":<21s}: {mean(v):.4f}')
# return a float value representing self.model's current performance,
# which is used for saving top n models.
# Tips: LARGER value --> better performance
return -mean(val_loss)
def save_model(self, epoch: int, cur_performance: float, desc: str = "") -> None:
save_path = osp.join(
self.save_root, f"epoch{epoch}_minus_loss_{cur_performance:.4f}_{desc}.pth")
torch.save(
{
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"minus_loss": cur_performance,
"optimizer_state_dict": self.optimizer.state_dict()
},
save_path
)
return save_path
def train(self) -> None:
logging.info("Begin Training")
performance = -999999
latest_flag = "latest"
begin_epoch = 1 if self.last_epoch == -1 else self.last_epoch + 1
try:
for ep in range(begin_epoch, self.num_epoch + 1):
self._train_one_epoch(ep)
performance = self._validate(ep)
self.scheduler.step()
# only save top n models
# performances in self.saved_models is naturally and descendingly sorted
for i, model in enumerate(self.saved_models):
if performance > model["performance"]:
save_path = self.save_model(ep, performance)
self.saved_models.insert(
i, {"save_path": save_path, "performance": performance})
del_path = self.saved_models.pop()["save_path"]
if del_path:
os.remove(del_path)
logging.info(
f"Top{i + 1} performance Reached: {performance:.4f} at epoch {ep}")
break
except KeyboardInterrupt:
print("Wait! Please allow me to save the latest model.\nJust a few seconds...")
latest_flag = "interrupted"
finally:
self.save_model(ep, performance, latest_flag)
logging.info(f"End of Training")
def back_up(self) -> None:
"""
back up a snapshot of current main codes
"""
back_up_dir = osp.join(self.save_root, "backups")
if not osp.exists(back_up_dir):
os.makedirs(back_up_dir)
back_up_list = [
"datasets",
"loss",
"model",
"tools",
"utils",
"vis",
"multi_proc_test.py",
"multi_proc_test.sh",
"test.py",
"test.sh",
"train.py",
"train.sh",
]
back_up_list = [osp.join(osp.dirname(osp.abspath(__file__)), x) for x in back_up_list]
back_up_list = list(filter(lambda x: osp.exists(x), back_up_list))
for f in back_up_list:
filename = osp.split(f)[-1]
if osp.isdir(f):
shutil.copytree(f, osp.join(back_up_dir, filename), symlinks=True, dirs_exist_ok=True)
else:
shutil.copy(f, back_up_dir, follow_symlinks=False)
print(f"{filename} back-up finished")
def parse_args(arg_str: Optional[str] = None) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--train_cfg", type=str, required=True)
parser.add_argument("-o", "--other_cfg", type=str, nargs="*", default=[])
parser.add_argument("-s", "--save_comment", type=str, default="",
help="save_comment will be showed in experiment folder")
parser.add_argument(
"--override", nargs="*", default=[],
help="override any config item (highest priority)",
# example
metavar="model.decoder.num_query 1",
)
parser.add_argument("-r", "--resume", action="store_true")
parser.add_argument("-c", "--checkpoint", type=str, help="checkpoint path")
args = parser.parse_args(arg_str)
return args
def load_cfg():
"""
config loading priority:
train_cfg < other_cfg < other argparse arguments
"""
args = parse_args()
train_cfg = EasyConfig()
# train cfg
train_cfg.load(args.train_cfg)
# other cfg
for c in args.other_cfg:
new_cfg = EasyConfig()
new_cfg.load(c)
train_cfg.update(new_cfg.dict())
def _load_argparse_cfg(args_dict: Dict[str, Any]):
output = {}
for key, arg in args_dict.items():
arg = literal_eval(arg)
if "." in key:
split_keys = key.split(".")
set_key = split_keys.pop()
current_dict = output
for k in split_keys:
if k not in current_dict.keys():
current_dict[k] = {}
current_dict = current_dict[k]
current_dict[set_key] = arg
else:
output[key] = arg
return output
# argparse cfg
train_cfg.update({
"config_paths": [args.train_cfg] + args.other_cfg,
"resume": args.resume,
"checkpoint_path": args.checkpoint,
})
assert len(args.override) % 2 == 0
override_cfg = dict(zip(args.override[::2], args.override[1::2]))
train_cfg.update(_load_argparse_cfg(override_cfg))
train_cfg.update({"save_comment": args.save_comment})
return train_cfg
if __name__ == "__main__":
train_cfg = load_cfg()
pt_trainer = Trainer(train_cfg)
pt_trainer.back_up()
pt_trainer.train()