-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsearch_GA.py
executable file
·228 lines (196 loc) · 10.5 KB
/
search_GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python3
"""Run a GA."""
import argparse
import glob
import os
import pickle
import numpy as np
import pandas as pd
import torch
import ga
def load_data(data_path: str) -> tuple:
"""
Function to load the csv data file.
Parameters
----------
data_path: str
Returns
-------
tuple
"""
assert isinstance(data_path, str)
if not os.path.exists(data_path):
raise FileNotFoundError(data_path)
assert (os.path.splitext(data_path)[1]).lower() == '.csv'
# Load the dataset.
data_df: pd.DataFrame = pd.read_csv(data_path, delimiter=',')
data_np: np.ndarray = data_df.values
x_np: np.ndarray = data_np[:, 0:-1]
y_np: np.ndarray = data_np[:, -1]
x_tensor: torch.Tensor = torch.as_tensor(x_np, dtype=torch.float)
y_tensor: torch.Tensor = torch.as_tensor(y_np, dtype=torch.long)
return x_tensor, y_tensor
def load_samples(samples_dir: str) -> list:
"""
Parameters
----------
samples_dir: str
Returns
-------
list
"""
assert isinstance(samples_dir, str)
if not os.path.exists(samples_dir):
raise FileNotFoundError(samples_dir)
list_sample_file: list = glob.glob(os.path.join(samples_dir, "**", "*.pkl"), recursive=True)
list_sample_file.sort()
sample_by_label: list = list()
for sample_file in list_sample_file:
with open(os.path.join(sample_file), mode="rb") as fp:
sample_by_label.append(pickle.load(fp))
return sample_by_label
def parse_args():
parser = argparse.ArgumentParser(description="Arguments for Genetic Algorithm.")
parser.add_argument("--train-data-path", type=str, required=True,
help="File path of a train data.",
dest="train_data_path")
parser.add_argument("--samples-dir", type=str, default=None, required=True,
help="Directory path of store samples.",
dest="samples_dir")
parser.add_argument("--ratio-min", type=float, default=0.0, required=False,
help="Minimum ratio for oversampling.",
dest="ratio_min")
parser.add_argument("--ratio-max", type=float, default=0.1, required=False,
help="Maximum ratio for oversampling.",
dest="ratio_max")
parser.add_argument("--ga-population-size", type=int, default=4, required=False,
help="Size of population. (GA)",
dest="ga_population_size")
parser.add_argument("--ga-selection-method", type=str, default="roulette", required=False,
help="Method of selection. (GA)",
dest="ga_selection_method")
parser.add_argument("--ga-crossover-method", type=str, default="onepoint", required=False,
help="Method of crossover. (GA)",
dest="ga_crossover_method")
parser.add_argument("--ga-crossover-size", type=int, default=2, required=False,
help="Size of mated individual. (GA)",
dest="ga_crossover_size")
parser.add_argument("--ga-mutation-method", type=str, default="swap", required=False,
help="Method of mutation. (GA)",
dest="ga_mutation_method")
parser.add_argument("--ga-mutation-rate", type=float, default=0.01, required=False,
help="Ratio of mutation. (GA)",
dest="ga_mutation_rate")
parser.add_argument("--ga-replacement-method", type=str, default="parents", required=False,
help="Method of replacement. (GA)",
dest="ga_replacement_method")
parser.add_argument("--ga-num-generations", type=int, default=1, required=False,
help="Iteration of generation. (GA)",
dest="ga_num_generations")
parser.add_argument("--ga-checkpoint-dir", type=str, default=None, required=False,
help="Directory path to store checkpoints. (GA)",
dest="ga_checkpoint_dir")
parser.add_argument("--classifier-num-hidden-layers", type=int, default=1, required=False,
help="Number of hidden layers in classifier. (Classifier)",
dest="classifier_num_hidden_layers")
parser.add_argument("--classifier-batch-size", type=int, default=16, required=False,
help="Batch size during training. (Classifier)",
dest="classifier_batch_size")
parser.add_argument("--classifier-num-epochs", type=int, default=1, required=False,
help="Number of training epochs. (Classifier)",
dest="classifier_num_epochs")
parser.add_argument("--classifier-run-device", type=str, default="cpu", required=False,
help="Running device for PyTorch. (Classifier)",
dest="classifier_run_device")
parser.add_argument("--classifier-learning-rate", type=float, default=0.001, required=False,
help="Learning rate for Adam optimizer. (Classifier)",
dest="classifier_learning_rate")
parser.add_argument("--classifier-beta-1", type=float, default=0.9, required=False,
help="Beta 1 for Adam optimizer. (Classifier)",
dest="classifier_beta_1")
parser.add_argument("--classifier-beta-2", type=float, default=0.999, required=False,
help="Beta 2 for Adam optimizer. (Classifier)",
dest="classifier_beta_2")
parser.add_argument("--rand-seed", type=int, default=0, required=False,
help="Seed for generating random numbers.",
dest="rand_seed")
parser.add_argument("--verbose", action='store_true', required=False,
help="Verbose")
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
TRAIN_DATA_PATH: str = args.train_data_path
SAMPLES_DIR: str = args.samples_dir
RATIO_MIN: float = args.ratio_min
RATIO_MAX: float = args.ratio_max
GA_POPULATION_SIZE: int = args.ga_population_size
GA_SELECTION_METHOD: str = args.ga_selection_method
GA_CROSSOVER_METHOD: str = args.ga_crossover_method
GA_CROSSOVER_SIZE: int = args.ga_crossover_size
GA_MUTATION_METHOD: str = args.ga_mutation_method
GA_MUTATION_RATE: float = args.ga_mutation_rate
GA_REPLACEMENT_METHOD: str = args.ga_replacement_method
GA_NUM_GENERATIONS: int = args.ga_num_generations
GA_CHECKPOINT_DIR: str = args.ga_checkpoint_dir
CLASSIFIER_NUM_HIDDEN_LAYERS: int = args.classifier_num_hidden_layers
CLASSIFIER_BATCH_SIZE: int = args.classifier_batch_size
CLASSIFIER_NUM_EPOCHS: int = args.classifier_num_epochs
CLASSIFIER_RUN_DEVICE: str = args.classifier_run_device
CLASSIFIER_LEARNING_RATE: float = args.classifier_learning_rate
CLASSIFIER_BETA_1: float = args.classifier_beta_1
CLASSIFIER_BETA_2: float = args.classifier_beta_2
RAND_SEED: int = args.rand_seed
VERBOSE: bool = args.verbose
assert isinstance(RATIO_MIN, float) and (RATIO_MIN >= 0.0)
assert isinstance(RATIO_MAX, float) and (RATIO_MAX > RATIO_MIN)
assert isinstance(GA_POPULATION_SIZE, int) and (GA_POPULATION_SIZE > 0)
assert isinstance(GA_SELECTION_METHOD, str)
assert isinstance(GA_CROSSOVER_METHOD, str)
assert isinstance(GA_CROSSOVER_SIZE, int) and (1 < GA_CROSSOVER_SIZE <= GA_POPULATION_SIZE)
assert isinstance(GA_MUTATION_METHOD, str)
assert isinstance(GA_MUTATION_RATE, float) and (0.0 <= GA_MUTATION_RATE <= 1.0)
assert isinstance(GA_REPLACEMENT_METHOD, str)
assert isinstance(GA_NUM_GENERATIONS, int) and (GA_NUM_GENERATIONS > 0)
if GA_CHECKPOINT_DIR is not None:
assert isinstance(GA_CHECKPOINT_DIR, str)
assert isinstance(CLASSIFIER_NUM_HIDDEN_LAYERS, int) and (CLASSIFIER_NUM_HIDDEN_LAYERS > 0)
assert isinstance(CLASSIFIER_BATCH_SIZE, int) and (CLASSIFIER_BATCH_SIZE > 0)
assert isinstance(CLASSIFIER_NUM_EPOCHS, int) and (CLASSIFIER_NUM_EPOCHS > 0)
assert isinstance(CLASSIFIER_RUN_DEVICE, str) and (CLASSIFIER_RUN_DEVICE.lower() in ["cpu", "cuda"])
assert isinstance(CLASSIFIER_LEARNING_RATE, float) and (CLASSIFIER_LEARNING_RATE > 0.0)
assert isinstance(CLASSIFIER_BETA_1, float) and (0.0 <= CLASSIFIER_BETA_1 < 1.0)
assert isinstance(CLASSIFIER_BETA_2, float) and (0.0 <= CLASSIFIER_BETA_2 < 1.0)
assert isinstance(RAND_SEED, int) and (RAND_SEED >= 0)
assert isinstance(VERBOSE, bool)
np.random.seed(seed=RAND_SEED)
torch.manual_seed(seed=RAND_SEED)
train_x, train_y = load_data(data_path=TRAIN_DATA_PATH)
list_sample_by_label: list = load_samples(samples_dir=SAMPLES_DIR)
size_features: int = train_x.size(1)
size_labels: int = int(train_y.max().item() - train_y.min().item()) + 1
population, logbook = ga.run(x=train_x,
y=train_y,
list_sample_by_label=list_sample_by_label,
ratio_min=RATIO_MIN,
ratio_max=RATIO_MAX,
population_size=GA_POPULATION_SIZE,
selection_method=GA_SELECTION_METHOD,
crossover_method=GA_CROSSOVER_METHOD,
crossover_size=GA_CROSSOVER_SIZE,
mutation_method=GA_MUTATION_METHOD,
mutation_rate=GA_MUTATION_RATE,
replacement_method=GA_REPLACEMENT_METHOD,
num_generations=GA_NUM_GENERATIONS,
checkpoint_dir=GA_CHECKPOINT_DIR,
rand_seed=RAND_SEED,
verbose=VERBOSE,
classifier_num_hidden_layers=CLASSIFIER_NUM_HIDDEN_LAYERS,
classifier_batch_size=CLASSIFIER_BATCH_SIZE,
classifier_num_epochs=CLASSIFIER_NUM_EPOCHS,
classifier_run_device=CLASSIFIER_RUN_DEVICE,
classifier_learning_rate=CLASSIFIER_LEARNING_RATE,
classifier_beta_1=CLASSIFIER_BETA_1,
classifier_beta_2=CLASSIFIER_BETA_2)
if GA_CHECKPOINT_DIR is not None:
with open(os.path.join(GA_CHECKPOINT_DIR, "logbook.pkl"), mode="wb") as fp:
pickle.dump(logbook, fp)