-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdvs.py
519 lines (394 loc) · 14.7 KB
/
dvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import sys
import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import vrep
oneshot = vrep.simx_opmode_oneshot
oneshot_wait = vrep.simx_opmode_oneshot_wait
def close(a, b, atol=1e-8, rtol=1e-5):
return np.abs(a - b) < atol + rtol * b
def imshow(image, ax=None):
ax = plt.gca() if ax is None else ax
ax.imshow(image, vmin=-1, vmax=1, cmap='gray', interpolation=None)
ax.invert_yaxis()
def add_to_image(image, events):
for x, y, s, _ in events:
image[y, x] += 1 if s else -1
return image
def as_image(events):
return add_to_image(np.zeros((128, 128)), events)
def error_messages(error_code):
error_pairs = [
(vrep.simx_error_novalue_flag, 'novalue'),
(vrep.simx_error_timeout_flag, 'timeout'),
(vrep.simx_error_illegal_opmode_flag, 'illegal opmode'),
(vrep.simx_error_remote_error_flag, 'remote error'),
(vrep.simx_error_split_progress_flag, 'split progress'),
(vrep.simx_error_local_error_flag, 'local error'),
(vrep.simx_error_initialize_error_flag, 'initialize error')
]
errors = [v for k, v in error_pairs if error_code % (2 * k) >= k]
return errors
def safe_call(vrep_fn, *args, **kwargs):
n_tries = kwargs.pop('n_tries', 10)
novalue_error = kwargs.pop('novalue_error', False)
for _ in range(n_tries):
output = vrep_fn(*args, **kwargs)
if isinstance(output, int):
# must be an error code
err = output
output = None
else:
err, output = output
if err == vrep.simx_error_noerror or (
novalue_error is False and err == vrep.simx_error_novalue_flag):
return output
elif err == vrep.simx_error_timeout_flag or (
novalue_error is None and err == vrep.simx_error_novalue_flag):
time.sleep(0.01)
continue
else:
err_string = ', '.join(error_messages(err))
raise RuntimeError("Could not execute '%s' due to errors:\n %s"
% (vrep_fn.__name__, err_string))
err_string = ', '.join(error_messages(err))
raise RuntimeError("Could not execute '%s' after %d tries due to:\n %s" %
(vrep_fn.__name__, n_tries, err_string))
def _process_events(cid, attr, mode=oneshot_wait, last=None):
err, data = vrep.simxGetStringSignal(cid, attr, mode)
safe_call(vrep.simxClearStringSignal, cid, attr, mode)
x, y, signs, times = [], [], [], []
if err or len(data) == 0:
pass
elif last is not None and (len(data) == last[0] and data[:4] == last[1]):
pass
else:
last = (len(data), data[:4])
# --- Format data
data = np.array(bytearray(data), dtype=np.uint8)
data.shape = (-1, 4)
signs = data[:, 0] >= 128
data[:, 0] -= signs * 128
x, y = data[:, 0], data[:, 1]
times = 256 * data[:, 3] + data[:, 2]
return (x, y, signs, times), last
def _combine_events(events):
n = sum(len(x) for x, y, s, t in events)
record = np.zeros(
n, dtype=[('x', 'u1'), ('y', 'u1'), ('s', 'b'), ('t', 'u2')])
i = 0
for x, y, s, t in events:
n = len(x)
record[i:i + n]['x'] = x
record[i:i + n]['y'] = y
record[i:i + n]['s'] = s
record[i:i + n]['t'] = t
i += n
return record
def record(filename='dvs.npz', stereo=False, continuous=False):
cid = vrep.simxStart(
connectionAddress='127.0.0.1',
connectionPort=19997,
waitUntilConnected=True,
doNotReconnectOnceDisconnected=True,
timeOutInMs=5000,
commThreadCycleInMs=5)
if cid != -1:
print("Connected to V-REP remote API server, client id: %s" % cid)
time.sleep(0.01)
else:
raise RuntimeError("Failed connecting to V-REP remote API server")
dt = safe_call(vrep.simxGetFloatingParameter,
cid, vrep.sim_floatparam_simulation_time_step, oneshot_wait)
safe_call(vrep.simxStartSimulation, cid, oneshot_wait, novalue_error=None)
try:
events0 = []
events1 = []
if continuous:
# Record continuously (does not work well)
last0 = (-1, '')
last1 = (-1, '')
try:
while True:
e0, last0 = _process_events(cid, "currentDVS", oneshot_wait, last0)
if stereo:
e1, last1 = _process_events(cid, "currentDVS0", oneshot_wait, last1)
# --- Store data
if len(e0[0]) > 0:
events0.append(e0)
if stereo and len(e1[0]) > 0:
events1.append(e1)
time.sleep(0.001)
except KeyboardInterrupt:
pass
else:
# Wait until interrupt to record
try:
while True:
time.sleep(0.01)
except KeyboardInterrupt:
pass
e0, _ = _process_events(cid, "currentDVS", oneshot_wait)
if stereo:
e1, _ = _process_events(cid, "currentDVS0", oneshot_wait)
# --- Store data
events0.append(e0)
if stereo:
events1.append(e1)
finally:
# --- Stop simulation
safe_call(vrep.simxStopSimulation, cid, oneshot_wait, novalue_error=None)
vrep.simxFinish(cid)
print("Simulation stopped")
# --- Save data
events0 = _combine_events(events0)
if stereo:
events1 = _combine_events(events1)
if filename is not None:
if not stereo:
np.savez(filename, events0=events0, dt=dt)
else:
np.savez(filename, events0=events0, events1=events1, dt=dt)
print("Saved '%s'" % filename)
return (events0, events1) if stereo else events0
def _load_events(raw_events, dt=None):
events = np.zeros(len(raw_events),
dtype=[('x', 'u1'), ('y', 'u1'), ('s', 'b'), ('t', 'f8')])
events['x'] = raw_events['x']
events['y'] = raw_events['y']
events['s'] = raw_events['s']
if dt is not None:
dtr = int(np.round(dt / 1e-4)) * 1e-4 # round dt to nearest 100 us
t = np.round(raw_events['t'] / (1000. * dt))
events['t'] = t * dtr
else:
events['t'] = raw_events['t'] / 1000.
assert (np.diff(events['t']) >= 0).all()
return events
def load(filename='dvs.npz', dt_round=False):
data = np.load(filename)
dt = data['dt'] if dt_round else None
events0 = _load_events(data['events0'], dt=dt)
if 'events1' in data:
events1 = _load_events(data['events1'], dt=dt)
return events0, events1
else:
return events0
def make_video(events, t0=0.0, t1=None, dt_frame=0.01, tau=0.01):
if t1 is None:
t1 = events['t'].max()
ts = events['t']
dt = 1e-3
nt = int((t1 - t0) / dt) + 1
# nt = min(nt, 1000) # cap at 1000 for now
image = np.zeros((128, 128))
images = np.zeros((nt, 128, 128))
for i in range(nt):
# --- decay image
image *= np.exp(-dt / tau) if tau > 0 else 0
# image *= 0
# --- add events
ti = t0 + i * dt
add_to_image(image, events[close(ts, ti)])
images[i] = image
# --- average in frames
nt_frame = int(dt_frame / dt)
nt_video = int(nt / nt_frame)
video = np.zeros((nt_video, 128, 128))
for i in range(nt_video):
slicei = slice(i*nt_frame, (i+1)*nt_frame)
video[i] = np.sum(images[slicei], axis=0)
return video
def show(events, t0=0.0, t1=None, axs=None, stereo=False):
import matplotlib.animation
if stereo:
assert axs is not None and len(axs) == 2
assert len(events) == 2
else:
if axs is None:
axs = plt.gca()
axs = [axs]
events = [events]
if stereo and t1 is None:
t1 = max(events[0]['t'].max(), events[1]['t'].max())
dt_frame = 0.01
videos = []
for eventsi in events:
videos.append(make_video(eventsi, t0, t1, dt_frame=dt_frame))
assert all(len(video) == len(videos[0]) for video in videos)
plt_images = []
for ax, video in zip(axs, videos):
plt_images.append(ax.imshow(video[0], vmin=-1, vmax=1, cmap='gray', interpolation=None))
ax.invert_yaxis()
def update(i, videos, axs, plt_images):
for ax, video, plt_image in zip(axs, videos, plt_images):
plt_image.set_data(video[i])
ax.set_title("t = %0.3f" % (t0 + (i + 1) * dt_frame))
return plt_images,
ani = matplotlib.animation.FuncAnimation(
ax.figure, update, len(videos[0]),
fargs=(videos, axs, plt_images),
interval=10, blit=False)
return ani
def animate(videos, axes):
import matplotlib.animation
plt_images = []
for ax, video in zip(axes, videos):
plt_images.append(ax.imshow(video[0], vmin=-1, vmax=1, cmap='gray', interpolation=None))
ax.invert_yaxis()
def update(i, videos, axes, plt_images):
for ax, video, plt_image in zip(axes, videos, plt_images):
plt_image.set_data(video[i])
ax.set_title("i = %d" % i)
return plt_images,
ani = matplotlib.animation.FuncAnimation(
ax.figure, update, len(videos[0]),
fargs=(videos, axes, plt_images),
interval=10, blit=False)
return ani
def flow(events, debug=False):
import collections
if debug:
debug_fig = plt.figure(19)
debug_fig.clf()
dt = np.unique(np.diff(np.unique(events['t']))).min()
print(dt)
t0 = 0.4
t1 = events['t'].max()
nt = int((t1 - t0) / dt) + 1
df = 5
nf = int(np.ceil(128. / df))
images = np.zeros((nt, 128, 128))
flows = np.nan * np.ones((nt, nf, nf, 2))
n_grids = 10
grids = collections.deque(maxlen=n_grids)
for it in range(nt):
ti = t0 + it * dt
eventsi = events[close(events['t'], ti)]
# --- make image
add_to_image(images[it], eventsi)
# --- compute flows
grid = np.zeros((df * nf, df * nf))
add_to_image(grid, eventsi)
grids.append(np.array(grid))
# sum grids
for g in list(grids)[:-1]:
grid += g
if 0:
dx = np.array(grid)
dx[:, 1:] -= dx[:, :-1]
dy = np.array(grid)
dy[1:, :] = np.diff(dy, axis=0)
else:
# calculate derivative on smoothed image
# TODO: be more efficient
import cv2
grid_s = cv2.GaussianBlur(grid, (9, 9), 3)
dx = np.array(grid_s)
dx[:, 1:] -= dx[:, :-1]
dy = np.array(grid_s)
dy[1:, :] = np.diff(dy, axis=0)
# if len(grids) > 1:
# dT = (grids[-1] - grids[-2]) / dt
# else:
# dT = grid / dt
# dT = grid / (dt * n_grids)
# dT = grid / dt
# dT = np.array(grid)
dT = np.array(grids[-1])
dx.shape = (nf, df, nf, df)
dy.shape = (nf, df, nf, df)
dT.shape = (nf, df, nf, df)
dXY = np.zeros((df * df, 2))
for y in range(nf):
for x in range(nf):
dXY[:, 0] = dx[y, :, x, :].ravel()
dXY[:, 1] = dy[y, :, x, :].ravel()
v, _, _, _ = np.linalg.lstsq(dXY, dT[y, :, x, :].ravel())
flows[it, y, x, :] = v
flow = flows[it]
flow[abs(flow) > 1e3] = 0
print("Frame %d (%d events)" % (it, len(eventsi)))
print(abs(dx).max(), abs(dy).max(), abs(dT).max())
if debug and it > 50 and it % 10 == 0:
debug_fig.clf()
gs = gridspec.GridSpec(1, 2)
gs0 = gridspec.GridSpecFromSubplotSpec(2, 2, subplot_spec=gs[0])
axes = [debug_fig.add_subplot(gs0[k]) for k in range(4)]
imshow(grid, ax=axes[0])
imshow(dT.reshape(nf*df, nf*df), ax=axes[1])
imshow(dx.reshape(nf*df, nf*df), ax=axes[2])
imshow(dy.reshape(nf*df, nf*df), ax=axes[3])
# axes[1].quiver(flows[it, :, :, 0], flows[it, :, :, 1])
# flow = flows[slice(max(it - 50, 0), it)].mean(axis=0)
flow = flows[it]
# print flow[:, :, 0]
# print flow[:, :, 1]
ax = debug_fig.add_subplot(gs[1])
ax.quiver(flow[:, :, 0], flow[:, :, 1], units='xy')
# imshow(dx.reshape(nf*df, nf*df), ax=axes[2])
# imshow(dy.reshape(nf*df, nf*df), ax=axes[3])
# (ax.invert_yaxis() for ax in [axes[0], axes[2], axes[3]])
plt.draw()
raw_input("Press any key...")
def stereo(events0, events1, t0=0.0, t1=None, debug=False):
if t1 is None:
t1 = max(events0['t'].max(), events1['t'].max())
dt = np.unique(np.diff(np.unique(events0['t']))).min()
nt = int((t1 - t0) / dt) + 1
# df = 5
# nf = int(np.ceil(128. / df))
images0 = np.zeros((nt, 128, 128))
images1 = np.zeros((nt, 128, 128))
# disps = np.zeros((nt, 128, 128))
disps = np.nan * np.ones((nt, 128, 128))
for it in range(nt):
ti = t0 + it * dt
events0i = events0[close(events0['t'], ti)]
events1i = events1[close(events1['t'], ti)]
add_to_image(images0[it], events0i)
add_to_image(images1[it], events1i)
matched = np.zeros(len(events1i), dtype=bool)
for x0, y0, s0, _ in events0i:
m = ~matched
# epipolar line
m &= abs(events1i['y'] - y0) <= 1
# sign
m &= events1i['s'] == s0
n = m.sum()
if n == 1:
# disps[it, y0, x0] = x0 - events1i[m]['x']
disps[it, y0, x0] = x0 - events1i['x'][m]
matched[m] = 1
elif n > 1:
pass
# print("multi-match")
else: # n == 0
pass
print(np.nanmin(disps[it]), np.nanmax(disps[it]))
r = 1
if debug and it > r:
plt.figure(101)
plt.clf()
axs = [plt.subplot(2, 2, i+1) for i in range(4)]
imshow(images0[it-r:it+1].sum(0), ax=axs[0])
imshow(images1[it-r:it+1].sum(0), ax=axs[1])
img2 = axs[2].imshow(np.nanmean(disps[it-r:it+1], axis=0))
axs[2].invert_yaxis()
plt.colorbar(img2, ax=axs[2])
plt.draw()
raw_input("Press any key...")
def test_record_stereo():
filename = 'dvs-epuck-stereo.npz'
# record(filename, stereo=True)
events0, events1 = load(filename)
plt.ion()
plt.figure(101)
plt.clf()
ax0 = plt.subplot(121)
ax1 = plt.subplot(122)
ani = show([events0, events1], axs=[ax0, ax1], t0=10, t1=11, stereo=True)
return ani
if __name__ == '__main__':
ani = test_record_stereo()