-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnlif-deep.py
722 lines (566 loc) · 22.5 KB
/
nlif-deep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""
Training an autoencoder with LIF-likes
"""
import collections
import os
import gzip
import cPickle as pickle
import urllib
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize
# os.environ['THEANO_FLAGS'] = 'device=gpu, floatX=float32'
# os.environ['THEANO_FLAGS'] = 'mode=DEBUG_MODE'
import theano
import theano.tensor as tt
import theano.sandbox.rng_mrg
from hinge import multi_hinge_margin
import plotting
from hunse_tools import tic, toc
plt.ion()
def norm(x, **kwargs):
return np.sqrt((x**2).sum(**kwargs))
def rms(x, **kwargs):
return np.sqrt((x**2).mean(**kwargs))
def nlif(x):
dtype = theano.config.floatX
sigma = tt.cast(0.05, dtype=dtype)
tau_ref = tt.cast(0.002, dtype=dtype)
tau_rc = tt.cast(0.02, dtype=dtype)
alpha = tt.cast(1, dtype=dtype)
beta = tt.cast(1, dtype=dtype)
amp = tt.cast(1. / 65, dtype=dtype)
j = alpha * x + beta - 1
j = sigma * tt.log1p(tt.exp(j / sigma))
v = amp / (tau_ref + tau_rc * tt.log1p(1. / j))
return tt.switch(j > 0, v, 0.0)
def show_recons(x, z):
plotting.compare([x.reshape(-1, 28, 28), z.reshape(-1, 28, 28)],
rows=5, cols=20, vlims=(-1, 2))
class Autoencoder(object):
"""Autoencoder with tied weights"""
def __init__(self, vis_shape, n_hid,
W=None, c=None, b=None, mask=None,
rf_shape=None, hidlinear=False, vislinear=False, seed=22):
dtype = theano.config.floatX
self.vis_shape = vis_shape if isinstance(vis_shape, tuple) else (vis_shape,)
self.n_vis = np.prod(vis_shape)
self.n_hid = n_hid
self.hidlinear = hidlinear
self.vislinear = vislinear
self.seed = seed
rng = np.random.RandomState(seed=self.seed)
self.theano_rng = theano.sandbox.rng_mrg.MRG_RandomStreams(seed=self.seed)
# create initial weights and biases
if W is None:
Wmag = 4 * np.sqrt(6. / (self.n_vis + self.n_hid))
W = rng.uniform(
low=-Wmag, high=Wmag, size=(self.n_vis, self.n_hid)
).astype(dtype)
if c is None:
c = np.zeros(self.n_hid, dtype=dtype)
if b is None:
b = np.zeros(self.n_vis, dtype=dtype)
# create initial sparsity mask
self.rf_shape = rf_shape
self.mask = mask
if rf_shape is not None and mask is None:
assert isinstance(vis_shape, tuple) and len(vis_shape) == 2
M, N = vis_shape
m, n = rf_shape
# find random positions for top-left corner of each RF
i = rng.randint(low=0, high=M-m+1, size=self.n_hid)
j = rng.randint(low=0, high=N-n+1, size=self.n_hid)
mask = np.zeros((M, N, self.n_hid), dtype='bool')
for k in xrange(self.n_hid):
mask[i[k]:i[k]+m, j[k]:j[k]+n, k] = True
self.mask = mask.reshape(self.n_vis, self.n_hid)
W = W * self.mask # make initial W sparse
# create states for weights and biases
W = W.astype(dtype)
c = c.astype(dtype)
b = b.astype(dtype)
self.W = theano.shared(W, name='W')
self.c = theano.shared(c, name='c')
self.b = theano.shared(b, name='b')
@classmethod
def load(cls, filename):
d = np.load(filename)['d'].item()
return cls(**d)
def save(self, filename):
d = dict()
for k, v in self.__dict__.items():
if k in ['W', 'c', 'b']:
d[k] = v.get_value()
elif k in ['vis_shape', 'n_hid', 'rf_shape',
'mask', 'vislinear', 'hidlinear', 'seed']:
d[k] = v
np.savez(filename, d=d)
@property
def filters(self):
if self.mask is None:
return self.W.get_value().T.reshape((self.n_hid,) + self.vis_shape)
else:
filters = self.W.get_value().T[self.mask.T]
shape = (self.n_hid,) + self.rf_shape
return filters.reshape(shape)
def propup(self, x, noise=0):
a = tt.dot(x, self.W) + self.c
if noise > 0:
a += self.theano_rng.normal(
size=a.shape, std=noise, dtype=theano.config.floatX)
return a if self.hidlinear else nlif(a)
def propdown(self, y):
V = self.V if hasattr(self, 'V') else self.W.T
a = tt.dot(y, V) + self.b
return a if self.vislinear else nlif(a)
@property
def encode(self):
data = tt.matrix('data')
code = self.propup(data)
return theano.function([data], code)
@property
def decode(self):
code = tt.matrix('code')
data = self.propdown(code)
return theano.function([code], data)
def check_params(self):
for param in [self.W, self.c, self.b]:
if param is not None:
assert np.isfinite(param.get_value()).all()
def auto_sgd(self, images, deep=None, test_images=None,
batch_size=100, rate=0.1, n_epochs=10):
dtype = theano.config.floatX
params = [self.W, self.c, self.b]
# --- compute backprop function
x = tt.matrix('images')
xn = x + self.theano_rng.normal(size=x.shape, std=1, dtype=dtype)
y = self.propup(xn, noise=0.1)
z = self.propdown(y)
# compute coding error
rmses = tt.sqrt(tt.mean((x - z)**2, axis=1))
error = tt.mean(rmses)
# compute gradients
grads = tt.grad(error, params)
updates = collections.OrderedDict()
for param, grad in zip(params, grads):
updates[param] = param - tt.cast(rate, dtype) * grad
if self.mask is not None:
updates[self.W] = updates[self.W] * self.mask
train_dbn = theano.function([x], error, updates=updates)
reconstruct = deep.reconstruct
# --- perform SGD
batches = images.reshape(-1, batch_size, images.shape[1])
assert np.isfinite(batches).all()
print batches.shape
for epoch in range(n_epochs):
costs = []
for batch in batches:
costs.append(train_dbn(batch))
self.check_params()
print "Epoch %d: %0.3f" % (epoch, np.mean(costs))
if deep is not None and test_images is not None:
# plot reconstructions on test set
plt.figure(2)
plt.clf()
recons = reconstruct(test_images)
show_recons(test_images, recons)
plt.draw()
# plot filters for first layer only
if deep is not None and self is deep.autos[0]:
plt.figure(3)
plt.clf()
plotting.filters(self.filters, rows=10, cols=20)
plt.draw()
class DeepAutoencoder(object):
def __init__(self, autos=None):
self.autos = autos if autos is not None else []
self.W = None # classifier weights
self.b = None # classifier biases
self.seed = 90
self.theano_rng = theano.sandbox.rng_mrg.MRG_RandomStreams(seed=self.seed)
def propup(self, images, noise=0):
codes = images
for auto in self.autos:
codes = auto.propup(codes, noise=noise)
return codes
def propdown(self, codes):
images = codes
for auto in self.autos[::-1]:
images = auto.propdown(images)
return images
@property
def encode(self):
images = tt.matrix('images')
codes = self.propup(images)
return theano.function([images], codes)
@property
def decode(self):
codes = tt.matrix('codes')
images = self.propdown(codes)
return theano.function([codes], images)
@property
def reconstruct(self):
x = tt.matrix('images')
y = self.propup(x)
z = self.propdown(y)
f = theano.function([x], z)
return f
def auto_sgd(self, images, test_images=None,
batch_size=100, rate=0.1, n_epochs=10):
dtype = theano.config.floatX
params = []
for auto in self.autos:
params.extend((auto.W, auto.c, auto.b))
# --- compute backprop function
x = tt.matrix('images')
xn = x + self.theano_rng.normal(size=x.shape, std=1, dtype=dtype)
# compute coding error
y = self.propup(xn)
z = self.propdown(y)
rmses = tt.sqrt(tt.mean((x - z)**2, axis=1))
error = tt.mean(rmses)
# compute gradients
grads = tt.grad(error, params)
updates = collections.OrderedDict()
for param, grad in zip(params, grads):
updates[param] = param - tt.cast(rate, dtype) * grad
for auto in self.autos:
if auto.mask is not None:
updates[auto.W] = updates[auto.W] * auto.mask
train_dbn = theano.function([x], error, updates=updates)
reconstruct = self.reconstruct
# --- perform SGD
batches = images.reshape(-1, batch_size, images.shape[1])
assert np.isfinite(batches).all()
for epoch in range(n_epochs):
costs = []
for batch in batches:
costs.append(train_dbn(batch))
# self.check_params()
print "Epoch %d: %0.3f" % (epoch, np.mean(costs))
if test_images is not None:
# plot reconstructions on test set
plt.figure(2)
plt.clf()
recons = reconstruct(test_images)
show_recons(test_images, recons)
plt.draw()
# plot filters for first layer only
plt.figure(3)
plt.clf()
plotting.filters(self.autos[0].filters, rows=10, cols=20)
plt.draw()
def auto_sgd_down(self, images, test_images=None,
batch_size=100, rate=0.1, n_epochs=10):
dtype = theano.config.floatX
params = []
for auto in self.autos:
auto.V = theano.shared(auto.W.get_value(borrow=False).T, name='V')
params.extend((auto.V, auto.b))
# --- compute backprop function
x = tt.matrix('images')
xn = x + self.theano_rng.normal(size=x.shape, std=1, dtype=dtype)
# compute coding error
y = self.propup(xn)
z = self.propdown(y)
rmses = tt.sqrt(tt.mean((x - z)**2, axis=1))
error = tt.mean(rmses)
# compute gradients
grads = tt.grad(error, params)
updates = collections.OrderedDict()
for param, grad in zip(params, grads):
updates[param] = param - tt.cast(rate, dtype) * grad
for auto in self.autos:
if auto.mask is not None:
updates[auto.V] = updates[auto.V] * auto.mask.T
train_dbn = theano.function([x], error, updates=updates)
reconstruct = self.reconstruct
# --- perform SGD
batches = images.reshape(-1, batch_size, images.shape[1])
assert np.isfinite(batches).all()
for epoch in range(n_epochs):
costs = []
for batch in batches:
costs.append(train_dbn(batch))
# self.check_params()
print "Epoch %d: %0.3f" % (epoch, np.mean(costs))
if test_images is not None:
# plot reconstructions on test set
plt.figure(2)
plt.clf()
recons = reconstruct(test_images)
show_recons(test_images, recons)
plt.draw()
# plot filters for first layer only
plt.figure(3)
plt.clf()
plotting.filters(self.autos[0].filters, rows=10, cols=20)
plt.draw()
def train_classifier(self, train, test, n_epochs=30):
dtype = theano.config.floatX
# --- find codes
images, labels = train
n_labels = len(np.unique(labels))
codes = self.encode(images.astype(dtype))
codes = theano.shared(codes.astype(dtype), name='codes')
labels = tt.cast(theano.shared(labels.astype(dtype), name='labels'), 'int32')
# --- compute backprop function
Wshape = (self.autos[-1].n_hid, n_labels)
x = tt.matrix('x', dtype=dtype)
y = tt.ivector('y')
W = tt.matrix('W', dtype=dtype)
b = tt.vector('b', dtype=dtype)
W0 = np.random.normal(size=Wshape).astype(dtype).flatten() / 10
b0 = np.zeros(n_labels)
split_p = lambda p: [p[:-n_labels].reshape(Wshape), p[-n_labels:]]
form_p = lambda params: np.hstack([p.flatten() for p in params])
# # compute negative log likelihood
# p_y_given_x = tt.nnet.softmax(tt.dot(x, W) + b)
# y_pred = tt.argmax(p_y_given_x, axis=1)
# nll = -tt.mean(tt.log(p_y_given_x)[tt.arange(y.shape[0]), y])
# error = tt.mean(tt.neq(y_pred, y))
# compute hinge loss
yc = tt.dot(x, W) + b
cost = multi_hinge_margin(yc, y).mean()
error = cost
# compute gradients
grads = tt.grad(cost, [W, b])
f_df = theano.function(
[W, b], [error] + grads,
givens={x: codes, y: labels})
# --- begin backprop
def f_df_wrapper(p):
w, b = split_p(p)
outs = f_df(w.astype(dtype), b.astype(dtype))
cost, grad = outs[0], form_p(outs[1:])
return cost.astype('float64'), grad.astype('float64')
p0 = form_p([W0, b0])
p_opt, mincost, info = scipy.optimize.lbfgsb.fmin_l_bfgs_b(
f_df_wrapper, p0, maxfun=n_epochs, iprint=1)
self.W, self.b = split_p(p_opt)
def backprop(self, train_set, test_set, n_epochs=30):
dtype = theano.config.floatX
params = []
for auto in self.autos:
params.extend([auto.W, auto.c])
# --- compute backprop function
assert self.W is not None and self.b is not None
W = theano.shared(self.W.astype(dtype), name='Wc')
b = theano.shared(self.b.astype(dtype), name='bc')
x = tt.matrix('batch')
y = tt.ivector('labels')
# compute coding error
# p_y_given_x = tt.nnet.softmax(tt.dot(self.propup(x), W) + b)
# y_pred = tt.argmax(p_y_given_x, axis=1)
# nll = -tt.mean(tt.log(p_y_given_x)[tt.arange(y.shape[0]), y])
# error = tt.mean(tt.neq(y_pred, y))
# compute classification error
yn = self.propup(x)
yc = tt.dot(yn, W) + b
cost = multi_hinge_margin(yc, y).mean()
error = tt.mean(tt.neq(tt.argmax(yc, axis=1), y))
# compute gradients
grads = tt.grad(cost, params)
f_df = theano.function([x, y], [error] + grads)
np_params = [param.get_value() for param in params]
def split_p(p):
split = []
i = 0
for param in np_params:
split.append(p[i:i + param.size].reshape(param.shape))
i += param.size
return split
def form_p(params):
return np.hstack([param.flatten() for param in params])
# --- run L_BFGS
images, labels = train
labels = labels.astype('int32')
def f_df_wrapper(p):
for param, value in zip(params, split_p(p)):
param.set_value(value.astype(param.dtype))
outs = f_df(images, labels)
cost, grads = outs[0], outs[1:]
grad = form_p(grads)
return cost.astype('float64'), grad.astype('float64')
p0 = form_p(np_params)
p_opt, mincost, info = scipy.optimize.lbfgsb.fmin_l_bfgs_b(
f_df_wrapper, p0, maxfun=100, iprint=1)
for param, value in zip(params, split_p(p_opt)):
param.set_value(value.astype(param.dtype), borrow=False)
def sgd(self, train_set, test_set,
rate=0.1, tradeoff=0.5, n_epochs=30, batch_size=100):
"""Use SGD to do combined autoencoder and classifier training"""
dtype = theano.config.floatX
assert tradeoff >= 0 and tradeoff <= 1
params = []
for auto in self.autos:
auto.V = theano.shared(auto.W.get_value(borrow=False).T, name='V')
params.extend([auto.W, auto.V, auto.c, auto.b])
# --- compute backprop function
assert self.W is not None and self.b is not None
W = theano.shared(self.W.astype(dtype), name='Wc')
b = theano.shared(self.b.astype(dtype), name='bc')
x = tt.matrix('batch')
y = tt.ivector('labels')
xn = x
# xn = x + self.theano_rng.normal(size=x.shape, std=0.1, dtype=dtype)
yn = self.propup(xn, noise=1.0)
# compute classification error
# p_y_given_x = tt.nnet.softmax(tt.dot(yn, W) + b)
# y_pred = tt.argmax(p_y_given_x, axis=1)
# nll = -tt.mean(tt.log(p_y_given_x)[tt.arange(y.shape[0]), y])
# class_error = tt.mean(tt.neq(y_pred, y))
yc = tt.dot(yn, W) + b
class_cost = multi_hinge_margin(yc, y).mean()
class_error = tt.mean(tt.neq(tt.argmax(yc, axis=1), y))
# compute autoencoder error
z = self.propdown(yn)
rmses = tt.sqrt(tt.mean((x - z)**2, axis=1))
auto_cost = tt.mean(rmses)
cost = (tt.cast(1 - tradeoff, dtype) * auto_cost
+ tt.cast(tradeoff, dtype) * class_cost)
error = class_error
# compute gradients
grads = tt.grad(cost, params)
updates = collections.OrderedDict()
for param, grad in zip(params, grads):
updates[param] = param - tt.cast(rate, dtype) * grad
for auto in self.autos:
if auto.mask is not None:
updates[auto.W] = updates[auto.W] * auto.mask
updates[auto.V] = updates[auto.V] * auto.mask.T
train_dbn = theano.function([x, y], error, updates=updates)
reconstruct = self.reconstruct
# --- perform SGD
images, labels = train_set
ibatches = images.reshape(-1, batch_size, images.shape[1])
lbatches = labels.reshape(-1, batch_size).astype('int32')
assert np.isfinite(ibatches).all()
test_images, test_labels = test_set
for epoch in range(n_epochs):
costs = []
for batch, label in zip(ibatches, lbatches):
costs.append(train_dbn(batch, label))
# copy back parameters (for test function)
self.W = W.get_value()
self.b = b.get_value()
print "Epoch %d: %0.3f" % (epoch, np.mean(costs))
if test_images is not None:
# plot reconstructions on test set
plt.figure(2)
plt.clf()
recons = reconstruct(test_images)
show_recons(test_images, recons)
plt.draw()
# plot filters for first layer only
plt.figure(3)
plt.clf()
plotting.filters(self.autos[0].filters, rows=10, cols=20)
plt.draw()
def test(self, test_set):
assert self.W is not None and self.b is not None
images, labels = test_set
codes = self.encode(images)
categories = np.unique(labels)
inds = np.argmax(np.dot(codes, self.W) + self.b, axis=1)
return (labels != categories[inds])
# --- load the data
filename = 'mnist.pkl.gz'
if not os.path.exists(filename):
url = 'http://deeplearning.net/data/mnist/mnist.pkl.gz'
urllib.urlretrieve(url, filename=filename)
with gzip.open(filename, 'rb') as f:
train, valid, test = pickle.load(f)
train_images, _ = train
valid_images, _ = valid
test_images, _ = test
for images in [train_images, valid_images, test_images]:
images -= images.mean(axis=0, keepdims=True)
images /= np.maximum(images.std(axis=0, keepdims=True), 3e-1)
# --- pretrain with SGD backprop
shapes = [(28, 28), 200, 50]
linear = [True, False, True]
rf_shapes = [(9, 9), None]
rates = [1., 0.3]
n_layers = len(shapes) - 1
assert len(linear) == len(shapes)
assert len(rf_shapes) == n_layers
assert len(rates) == n_layers
n_epochs = 15
batch_size = 100
deep = DeepAutoencoder()
data = train_images
for i in range(n_layers):
savename = "nlif-deep-%d.npz" % i
if not os.path.exists(savename):
auto = Autoencoder(
shapes[i], shapes[i+1], rf_shape=rf_shapes[i],
vislinear=linear[i], hidlinear=linear[i+1])
deep.autos.append(auto)
auto.auto_sgd(data, deep, test_images,
n_epochs=n_epochs, rate=rates[i])
auto.save(savename)
else:
auto = Autoencoder.load(savename)
deep.autos.append(auto)
data = auto.encode(data)
plt.figure(99)
plt.clf()
recons = deep.reconstruct(test_images)
show_recons(test_images, recons)
print "recons error", rms(test_images - recons, axis=1).mean()
# deep.auto_sgd(train_images, test_images, rate=0.3, n_epochs=30)
# print "recons error", rms(test_images - recons, axis=1).mean()
# --- train classifier with backprop
savename = "nlif-deep-hinge.npz"
if not os.path.exists(savename):
deep.train_classifier(train, test)
np.savez(savename, W=deep.W, b=deep.b)
else:
savedata = np.load(savename)
deep.W, deep.b = savedata['W'], savedata['b']
print "mean error", deep.test(test).mean()
# --- train with backprop
if 1:
# deep.backprop(train, test, n_epochs=100)
deep.sgd(train, test, n_epochs=50)
print "mean error", deep.test(test).mean()
# --- try to get autoencoder back
if 0:
deep.auto_sgd_down(train_images, test_images, rate=0.6, n_epochs=30)
print "recons error", rms(test_images - recons, axis=1).mean()
if 0:
# Try to learn linear reconstructor (doesn't work too well)
import nengo
codes = deep.encode(train_images)
decoders, info = nengo.decoders.LstsqL2()(codes, train_images)
print info['rmses'].mean()
recons = np.dot(codes, decoders)
print rms(train_images - recons, axis=1).mean()
plt.figure(99)
plt.clf()
show_recons(test_images, recons)
if 0:
# save parameters
d = {}
d['weights'] = [auto.W.get_value() for auto in deep.autos]
d['biases'] = [auto.c.get_value() for auto in deep.autos]
if all(hasattr(auto, 'V') for auto in deep.autos):
d['rec_weights'] = [auto.V.get_value() for auto in deep.autos]
d['rec_biases'] = [auto.b.get_value() for auto in deep.autos]
d['Wc'] = deep.W
d['bc'] = deep.b
np.savez('nlif-deep.npz', **d)
if 0:
# compute top layers mean and std
codes = deep.encode(train_images)
classes = np.dot(codes, deep.W) + deep.b
plt.figure(108)
plt.clf()
plt.subplot(211)
plt.hist(codes.flatten(), 100)
plt.subplot(212)
plt.hist(classes.flatten(), 100)
print "code (mean, std):", codes.mean(), codes.std()
print "class (mean, std):", classes.mean(), classes.std()