-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhinge.py
176 lines (165 loc) · 6.31 KB
/
hinge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Theano op for multiclass hinge loss courtesy James Bergstra.
http://trac-hg.assembla.com/pylearn/changeset/
d4a35c1c0a232fdec05df19387438d9c1638e06c
"""
# This file seems like it has some overlap with theano.tensor.nnet. Which functions should go
# in which file?
from theano import gof
from theano.gof import Apply
from theano import tensor
from theano.tensor import DisconnectedType
import numpy as np
class MultiHingeMargin(gof.Op):
"""
This is a hinge loss function for multiclass predictions.
For each vector X[i] and label index yidx[i],
output z[i] = 1 - margin
where margin is the difference between X[i, yidx[i]] and the maximum other element of X[i].
"""
default_output = 0
def __eq__(self, other):
return type(self) == type(other)
def __hash__(self):
return tensor.hashtype(self)
def __str__(self):
return self.__class__.__name__
def make_node(self, X, yidx):
X_ = tensor.as_tensor_variable(X)
yidx_ = tensor.as_tensor_variable(yidx)
if X_.type.ndim != 2:
raise TypeError('X must be matrix')
if yidx.type.ndim != 1:
raise TypeError('yidx must be vector')
if 'int' not in str(yidx.type.dtype):
raise TypeError("yidx must be integers, it's a vector of class labels")
hinge_loss = tensor.vector(dtype=X.dtype)
winners = X.type()
return Apply(self, [X_, yidx_], [hinge_loss, winners])
def perform(self, node, input_storage, out):
X, yidx = input_storage
toplabel = X.shape[1]-1
out[0][0] = z = np.zeros_like(X[:,0])
out[1][0] = w = np.zeros_like(X)
for i,Xi in enumerate(X):
yi = yidx[i]
if yi == 0:
next_best = Xi[1:].argmax()+1
elif yi==toplabel:
next_best = Xi[:toplabel].argmax()
else:
next_best0 = Xi[:yi].argmax()
next_best1 = Xi[yi+1:].argmax()+yi+1
next_best = next_best0 if Xi[next_best0]>Xi[next_best1] else next_best1
margin = Xi[yi] - Xi[next_best]
if margin < 1:
z[i] = 1 - margin
w[i,yi] = -1
w[i,next_best] = 1
def grad(self, inputs, g_outs):
z = self(*inputs)
w = z.owner.outputs[1]
gz, gw = g_outs
gX = gz.dimshuffle(0,'x') * w
if gw is None:
gY = None
elif isinstance(gw.type, DisconnectedType):
gY = DisconnectedType()()
else:
raise NotImplementedError()
return [gX, gY]
# def c_code_cache_version(self):
# return (1,)
# def c_code(self, node, name, (X, y_idx), (z,w), sub):
# return '''
# if ((%(X)s->descr->type_num != PyArray_DOUBLE) && (%(X)s->descr->type_num != PyArray_FLOAT))
# {
# PyErr_SetString(PyExc_TypeError, "types should be float or float64");
# %(fail)s;
# }
# if ((%(y_idx)s->descr->type_num != PyArray_INT64)
# && (%(y_idx)s->descr->type_num != PyArray_INT32)
# && (%(y_idx)s->descr->type_num != PyArray_INT16)
# && (%(y_idx)s->descr->type_num != PyArray_INT8))
# {
# PyErr_SetString(PyExc_TypeError, "y_idx not int8, int16, int32, or int64");
# %(fail)s;
# }
# if ((%(X)s->nd != 2)
# || (%(y_idx)s->nd != 1))
# {
# PyErr_SetString(PyExc_ValueError, "rank error");
# %(fail)s;
# }
# if (%(X)s->dimensions[0] != %(y_idx)s->dimensions[0])
# {
# PyErr_SetString(PyExc_ValueError, "dy.shape[0] != sm.shape[0]");
# %(fail)s;
# }
# if ((NULL == %(z)s)
# || (%(z)s->dimensions[0] != %(X)s->dimensions[0]))
# {
# Py_XDECREF(%(z)s);
# %(z)s = (PyArrayObject*) PyArray_SimpleNew(1, PyArray_DIMS(%(X)s),
# type_num_%(X)s);
# if (!%(z)s)
# {
# PyErr_SetString(PyExc_MemoryError, "failed to alloc dx output");
# %(fail)s;
# }
# }
# if ((NULL == %(w)s)
# || (%(w)s->dimensions[0] != %(X)s->dimensions[0])
# || (%(w)s->dimensions[1] != %(X)s->dimensions[1]))
# {
# Py_XDECREF(%(w)s);
# %(w)s = (PyArrayObject*) PyArray_SimpleNew(2, PyArray_DIMS(%(X)s),
# type_num_%(X)s);
# if (!%(w)s)
# {
# PyErr_SetString(PyExc_MemoryError, "failed to alloc dx output");
# %(fail)s;
# }
# }
# for (size_t i = 0; i < %(X)s->dimensions[0]; ++i)
# {
# const dtype_%(X)s* __restrict__ X_i = (dtype_%(X)s*) (%(X)s->data + %(X)s->strides[0] * i);
# npy_intp SX = %(X)s->strides[1]/sizeof(dtype_%(X)s);
# dtype_%(w)s* __restrict__ w_i = (dtype_%(w)s*) (%(w)s->data + %(w)s->strides[0] * i);
# npy_intp Sw = %(w)s->strides[1]/sizeof(dtype_%(w)s);
# const dtype_%(y_idx)s y_i = ((dtype_%(y_idx)s*)(%(y_idx)s->data + %(y_idx)s->strides[0] * i))[0];
# dtype_%(X)s X_i_max = X_i[0];
# dtype_%(X)s X_at_y_i = X_i[0];
# size_t X_i_argmax = 0;
# size_t j = 1;
# w_i[0] = 0;
# if (y_i == 0)
# {
# X_i_max = X_i[SX];
# X_i_argmax = 1;
# w_i[Sw] = 0;
# }
# for (; j < %(X)s->dimensions[1]; ++j)
# {
# dtype_%(X)s X_ij = X_i[j*SX];
# if (j == y_i)
# {
# X_at_y_i = X_ij;
# }
# else if (X_ij > X_i_max)
# {
# X_i_max = X_ij;
# X_i_argmax = j;
# }
# w_i[j*Sw] = 0;
# }
# if (0 < 1 - X_at_y_i + X_i_max)
# {
# ((dtype_%(z)s*)(%(z)s->data + %(z)s->strides[0] * i))[0]
# = 1 - X_at_y_i + X_i_max;
# w_i[y_i*Sw] = -1;
# w_i[X_i_argmax*Sw] = 1;
# }
# }
# ''' % dict(locals(), **sub)
multi_hinge_margin = MultiHingeMargin()