-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMPHP_daily.py
279 lines (213 loc) · 10.4 KB
/
MPHP_daily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import numpy as np
import time as T
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.utils.extmath import cartesian
import matplotlib.pyplot as plt
class MDHP:
'''Multidimensional Periodic Hawkes Process
Captures rates with periodic component depending on the day of week
'''
def __init__(self, alpha=[[0.5]], mu=[0.1], mu_day=np.ones(7), omega=1.0):
'''params should be of form:
alpha: numpy.array((u,u)), mu: numpy.array((,u)), omega: float'''
self.data = []
self.alpha, self.mu, self.mu_day, self.omega = np.array(alpha), np.array(mu), np.array(mu_day), omega
self.dim = self.mu.shape[0]
self.check_stability()
def check_stability(self):
''' check stability of process (max alpha eigenvalue < 1)'''
w, v = np.linalg.eig(self.alpha)
me = np.amax(np.abs(w))
print('Max eigenvalue: %1.5f' % me)
if me >= 1.:
print('(WARNING) Unstable.')
def generate_seq_daily_weekly(self, horizon):
'''Generate a sequence based on mu, alpha, omega values.
Uses Ogata's thinning method, with some speedups, noted below'''
self.data = [] # clear history
M = np.sum(self.mu)
Dstar = np.sum(self.mu_day)
mu_day_max = np.max(self.mu_day)
mu_hour_max = np.max(self.mu_hour)
while True:
s = np.random.exponential(scale=1. / M)
day = int(np.floor(s) % 7)
hour = int(24*(s - day))
# attribute (weighted random sample, since sum(self.mu)==M)
U = np.random.uniform()
if U <= self.mu_day[day]/Dstar:
event_type = np.random.choice(np.arange(self.dim), 1, p=(self.mu / M)) #[0]
self.data.append([s, event_type])
break
last_rates = self.mu * self.mu_day[day] * self.mu_hour[hour]
last_day = day
last_hour = hour
event_rejected = False
while True:
tj, uj = self.data[-1][0], int(self.data[-1][1])
if event_rejected:
M = np.sum(rates) + np.sum(self.mu) * \
(mu_day_max*mu_hour_max - self.mu_day[day]*self.mu_hour[hour])
event_rejected = False
else: # recalculate M (inclusive of last event)
M = mu_day_max*mu_hour_max*np.sum(self.mu) + \
np.sum(last_rates) + self.omega * np.sum(self.alpha[:, uj])
# generate new event
s += np.random.exponential(scale=1. / M)
day = int(np.floor(s) % 7)
hour = int(24*(s - day))
# calc rates at time s (use trick to take advantage of rates at last event)
rates = self.mu*self.mu_day[day]*self.mu_hour[hour] + np.exp(-self.omega * (s - tj)) * \
(self.alpha[:, uj].flatten() * self.omega + last_rates \
- self.mu*self.mu_day[last_day]*self.mu_hour[last_hour])
# attribution/rejection test
# handle attribution and thinning in one step as weighted random sample
diff = M - np.sum(rates)
event_type = np.random.choice(np.arange(self.dim + 1), 1,
p=(np.append(rates, diff) / M))
if event_type < self.dim:
self.data.append([s, event_type])
last_day = day
last_hour = hour
last_rates = rates.copy()
else:
event_rejected = True
# if past horizon, done
if s >= horizon:
self.data = np.array(self.data)
self.data = self.data[self.data[:, 0] < horizon]
return self.data
def EM_daily_weekly(self, Ahat, mhat, mhatday, omega, seq=[], day_reg=np.ones(7), hour_reg=np.ones(24),
smx=None, tmx=None, regularize=False, Tm=-1, maxiter=100, epsilon=0.01, verbose=True):
'''implements MAP EM.
seq[0, :] Time of event in days (float)
seq[1, :] Event type, indexed 0 to dim-1
Optional regularization:
- On excitation matrix Ahat:
`smx` and `tmx` matrix (shape=(dim,dim)).
In general, the `tmx` matrix is a pseudocount of parent events from column j,
and the `smx` matrix is a pseudocount of child events from column j -> i,
however, for more details/usage see https://stmorse.github.io/docs/orc-thesis.pdf
- On day of week parameter mhatday:
day_reg[i] is a pseudocount of events on the ith day of the week
Default: day_reg[i] = 1 corresponds to no regularization for ith day
'''
# if no sequence passed, uses class instance data
if len(seq) == 0:
seq = self.data
N = len(seq)
day = (np.floor(seq[:, 0]) % 7).astype(int)
hour = (24*(s - day)).astype(int)
self.dim = mhat.shape[0]
Tm = float(seq[-1, 0]) if Tm < 0 else float(Tm)
sequ = seq[:, 1].astype(int)
p_ii = np.random.uniform(0.01, 0.99, size=N)
p_ij = np.random.uniform(0.01, 0.99, size=(N, N))
# PRECOMPUTATIONS
# diffs[i,j] = t_i - t_j for j < i (o.w. zero)
diffs = pairwise_distances(np.array([seq[:, 0]]).T, metric='euclidean')
diffs[np.triu_indices(N)] = 0
# kern[i,j] = omega*np.exp(-omega*diffs[i,j])
kern = omega * np.exp(-omega * diffs)
colidx = np.tile(sequ.reshape((1, N)), (N, 1))
rowidx = np.tile(sequ.reshape((N, 1)), (1, N))
# approx of Gt sum in a_{uu'} denom **
seqcnts = np.array([len(np.where(sequ == i)[0]) for i in range(self.dim)])
seqcnts = np.tile(seqcnts, (self.dim, 1))
# returns sum of all pmat vals where u_i=a, u_j=b
# *IF* pmat upper tri set to zero, this is
# \sum_{u_i=u}\sum_{u_j=u', j<i} p_{ij}
def sum_pij(a, b):
c = cartesian([np.where(seq[:, 1] == int(a))[0], np.where(seq[:, 1] == int(b))[0]])
return np.sum(p_ij[c[:, 0], c[:, 1]])
vp = np.vectorize(sum_pij)
# \int_0^t g(t') dt' with g(t)=we^{-wt}
# def G(t): return 1 - np.exp(-omega * t)
# vg = np.vectorize(G)
# Gdenom = np.array([np.sum(vg(diffs[-1,np.where(seq[:,1]==i)])) for i in range(dim)])
k = 0
old_LL = -10000
while k < maxiter:
Auu = Ahat[rowidx, colidx] #ahat[i, j] = a_ui, uj
ag = np.multiply(Auu, kern)
ag[np.triu_indices(N)] = 0
# compute m_{u_i}
self.mu = mhat[sequ]
# compute delta_{d_i}
self.mu_day = mhatday[day]
self.mu_hour = mhathour[hour]
# compute rates of u_i at time i for all times i
rates = self.mu*self.mu_day*self.mu_hour + np.sum(ag, axis=1)
# compute matrix of p_ii and p_ij (keep separate for later computations)
p_ij = np.divide(ag, np.tile(np.array([rates]).T, (1, N)))
p_ii = np.divide(self.mu, rates)
# compute mhat: mhat_u = (\sum_{u_i=u} p_ii) / T
mhat = np.array([np.sum(p_ii[np.where(seq[:, 1] == i)])
for i in range(self.dim)]) / Tm
mhatday = np.array([np.divide(np.sum(p_ii[np.where(day == i)]) + day_reg[i] - 1,
np.sum(p_ii)/7 + day_reg[i] - 1) for i in range(7)])
mhathour = np.array([np.divide(np.sum(p_ii[np.where(hour == i)]) + hour_reg[i] - 1,
np.sum(p_ii)/24 + hour_reg[i] - 1) for i in range(24)])
# ahat_{u,u'} = (\sum_{u_i=u}\sum_{u_j=u', j<i} p_ij) / \sum_{u_j=u'} G(T-t_j)
# approximate with G(T-T_j) = 1
if regularize:
Ahat = np.divide(np.fromfunction(lambda i, j: vp(i, j), (self.dim, self.dim)) + (smx - 1),
seqcnts + tmx)
else:
Ahat = np.divide(np.fromfunction(lambda i, j: vp(i, j), (self.dim, self.dim)),
seqcnts)
if k % 10 == 0:
term1 = np.sum(np.log(rates))
term2 = Tm * np.sum(mhat)
term3 = np.sum(np.sum(Ahat[u, int(seq[j, 1])] for j in range(N)) for u in range(self.dim))
new_LL = (1./N) * (term1 - term2 - term3)
#new_LL = (1. / N) * (term1 - term3)
if abs(new_LL - old_LL) <= epsilon:
if verbose:
print('Reached stopping criterion. (Old: %1.3f New: %1.3f)' % (old_LL, new_LL))
self.alpha = Ahat
self.mu = mhat
self.mu_day = mhatday
self.mu_hour = mhathour
return Ahat, mhat, mhatday, mhathour
if verbose:
print('After ITER %d (old: %1.3f new: %1.3f)' % (k, old_LL, new_LL))
print(' terms %1.4f, %1.4f, %1.4f' % (term1, term2, term3))
old_LL = new_LL
k += 1
if verbose:
print('Reached max iter (%d).' % maxiter)
self.alpha = Ahat
self.mu = mhat
self.mu_day = mhatday
self.mu_hour = mhathour
return Ahat, mhat, mhatday, mhathour
# VISUALIZATION METHODS
def get_rate(self, ct, d):
# return rate at time ct in dimension d
seq = np.array(self.data)
if not np.all(ct > seq[:, 0]):
seq = seq[seq[:, 0] < ct]
return self.mu[d] + \
np.sum([self.alpha[d, int(j)] * self.omega * np.exp(-self.omega * (ct - t)) for t, j in seq])
def plot_events(self, horizon=-1, showDays=True, labeled=True):
if horizon < 0:
horizon = np.amax(self.data[:, 0])
fig = plt.figure(figsize=(10, 2))
ax = plt.gca()
for i in range(self.dim):
subseq = self.data[self.data[:, 1] == i][:, 0]
plt.plot(subseq, np.zeros(len(subseq)) - i, 'bo', alpha=0.2)
if showDays:
for j in range(1, int(horizon)):
plt.plot([j, j], [-self.dim, 1], 'k:', alpha=0.15)
if labeled:
ax.set_yticklabels('')
ax.set_yticks(-np.arange(0, self.dim), minor=True)
ax.set_yticklabels([r'$e_{%d}$' % i for i in range(self.dim)], minor=True)
else:
ax.yaxis.set_visible(False)
ax.set_xlim([0, horizon])
ax.set_ylim([-self.dim, 1])
ax.set_xlabel('Days')
plt.tight_layout()