-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_utils.py
154 lines (130 loc) · 4.37 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import pickle
import random
import logging
import numpy as np
import jieba
def get_lexical_feature(max_words, str_words):
'''
获得词性的特征
:param max_words:
:param str_words:
:return:
'''
features = np.zeros([max_words, 4], dtype=np.float32) # 写死了
index = 0
# BIES tags(结巴分词加入外在的特征)
for word in jieba.cut("".join(str_words)): # 直接分词
len_word = len(word)
if len_word == 1:
features[index, 0] = 1 # S
index += 1
else:
features[index, 1] = 1 # B
index += 1
for i_ in range(len_word - 2): # I
features[index, 2] = 1
index += 1
features[index, 3] = 1 # E
index += 1
return features
def load_word2vec(path, id_to_vec):
with open(path, "rb") as f:
word_vec = pickle.load(f)
word2vec = []
for i, word in id_to_vec.items():
if word in word_vec:
word2vec.append(word_vec[word])
else:
vec = [0.0 for _ in range(100)]
word2vec.append(vec)
return word2vec
def get_logger(name):
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(os.path.join("./log", name + ".log"))
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
fh.setFormatter(formatter)
logger.addHandler(ch)
logger.addHandler(fh)
return logger
def conll_eval(results, path):
script_file = "./conlleval"
output_file = os.path.join(path, "XX.utf8")
result_file = os.path.join(path, "XX.utf8")
with open(output_file, "w") as f:
to_write = []
for block in results:
for line in block[0]:
to_write.append(line + "\n")
if block[1]:
to_write.append("\n")
# f.writelines(to_write)
for line in to_write:
f.write(line)
# f.writelines([str(line) + "\n" for line in to_write])
os.system("perl {} < {} > {}".format(script_file, output_file, result_file))
eval_lines = []
with open(result_file) as f:
for line in f:
eval_lines.append(line.strip())
return eval_lines
def calculate_accuracy(labels, paths, lengths):
# calculate token level accuracy, return correct tag numbers and total tag numbers
total = 0
correct = 0
for label, path, length in zip(labels, paths, lengths):
gold = label[length]
correct += np.sum(np.equal(gold, path))
total += length
return correct, total
class BatchManager(object):
def __init__(self, data, num_tag, max_len, batch_size):
self.data = data
self.numbatch = len(self.data) // batch_size
# print "numbatch", self.numbatch, "batch_size", batch_size, "len", len(self.data)
self.batch_size = batch_size
self.batch_index = 0
self.len_data = len(data)
self.num_tag = num_tag
@staticmethod
def unpack(data):
words = []
tags = []
lengths = []
features = []
str_lines = []
end_of_doc = []
for item in data:
# print "sent-len", item["len"]
if item["len"] < 0:
continue
words.append(item["words"])
tags.append(item["tags"])
lengths.append(item["len"])
features.append(item["features"])
str_lines.append(item["str_line"])
end_of_doc.append(item["end_of_doc"])
return {"words": words,
"tags": tags,
"len": lengths,
"features": features,
"str_lines": str_lines,
"end_of_doc": end_of_doc}
def shuffle(self):
random.shuffle(self.data)
def iter_batch(self):
for i in range(self.numbatch+1): # fix last part
# print "doing batch", i
if i == self.numbatch:
data = self.data[i*self.batch_size:]# 后面部分
else:
data = self.data[i*self.batch_size:(i+1)*self.batch_size]
# print "data-len1", len(data)
yield self.unpack(data)