-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_tcga_mixpresition.py
159 lines (133 loc) · 6.25 KB
/
main_tcga_mixpresition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import numpy as np
from tqdm import tqdm
from arguments import get_args
from augmentations import get_aug
from models import get_model, get_backbone
from tools import AverageMeter, knn_monitor, Logger, file_exist_check
from datasets import get_dataset
from optimizers import get_optimizer, LR_Scheduler
from linear_eval import main as linear_eval
from datetime import datetime
from torchvision import datasets
from torch.cuda.amp import autocast, GradScaler as autocast, GradScaler
def main(device, args):
train_directory = '../data/train'
image_name_file = '../data/original.csv'
val_directory = '../data/train'
train_loader = torch.utils.data.DataLoader(
dataset=get_dataset('random', train_directory, image_name_file,
transform=get_aug(train=True, **args.aug_kwargs),
train=True,
**args.dataset_kwargs),
# dataset=datasets.ImageFolder(root=train_directory, transform=get_aug(train=True, **args.aug_kwargs)),
shuffle=True,
batch_size=args.train.batch_size,
**args.dataloader_kwargs
)
memory_loader = torch.utils.data.DataLoader(
dataset=datasets.ImageFolder(root=val_directory, transform=get_aug(train=False, train_classifier=False, **args.aug_kwargs)),
shuffle=False,
batch_size=args.train.batch_size,
**args.dataloader_kwargs
)
test_loader = torch.utils.data.DataLoader(
dataset=datasets.ImageFolder(root=val_directory, transform=get_aug(train=False, train_classifier=False, **args.aug_kwargs)),
shuffle=False,
batch_size=args.train.batch_size,
**args.dataloader_kwargs
)
# define model
model = get_model(args.model).to(device)
model = torch.nn.DataParallel(model)
scaler = torch.cuda.amp.GradScaler()
# define optimizer
optimizer = get_optimizer(
args.train.optimizer.name, model,
lr=args.train.base_lr * args.train.batch_size / 256,
momentum=args.train.optimizer.momentum,
weight_decay=args.train.optimizer.weight_decay)
lr_scheduler = LR_Scheduler(
optimizer,
args.train.warmup_epochs, args.train.warmup_lr * args.train.batch_size / 256,
args.train.num_epochs, args.train.base_lr * args.train.batch_size / 256,
args.train.final_lr * args.train.batch_size / 256,
len(train_loader),
constant_predictor_lr=True # see the end of section 4.2 predictor
)
RESUME = False
start_epoch = 0
if RESUME:
model = get_backbone(args.model.backbone)
classifier = nn.Linear(in_features=model.output_dim, out_features=9, bias=True).to(args.device)
assert args.eval_from is not None
save_dict = torch.load(args.eval_from, map_location='cpu')
msg = model.load_state_dict({k[9:]: v for k, v in save_dict['state_dict'].items() if k.startswith('backbone.')},
strict=True)
path_checkpoint = "./checkpoint/simsiam-TCGA-0218-nearby_0221134812.pth" # 断点路径
checkpoint = torch.load(path_checkpoint) # 加载断点
model.load_state_dict(checkpoint['net']) # 加载模型可学习参数
optimizer.load_state_dict(checkpoint['optimizer']) # 加载优化器参数
start_epoch = checkpoint['epoch'] # 设置开始的epoch
logger = Logger(tensorboard=args.logger.tensorboard, matplotlib=args.logger.matplotlib, log_dir=args.log_dir)
accuracy = 0
# Start training
global_progress = tqdm(range(start_epoch, args.train.stop_at_epoch), desc=f'Training')
for epoch in global_progress:
model.train()
local_progress = tqdm(train_loader, desc=f'Epoch {epoch}/{args.train.num_epochs}', disable=args.hide_progress)
for idx, (images1, images2, images3, labels) in enumerate(local_progress):
model.zero_grad()
with torch.cuda.amp.autocast():
data_dict = model.forward(images1.to(device, non_blocking=True), images2.to(device, non_blocking=True),
images3.to(device, non_blocking=True))
loss = data_dict['loss'].mean() # ddp
# loss.backward()
scaler.scale(loss).backward()
# optimizer.step()
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
data_dict.update({'lr': lr_scheduler.get_lr()})
local_progress.set_postfix(data_dict)
logger.update_scalers(data_dict)
if args.train.knn_monitor and epoch % args.train.knn_interval == 0:
accuracy = knn_monitor(model.module.backbone, memory_loader, test_loader, device,
k=min(args.train.knn_k, len(memory_loader.dataset)),
hide_progress=args.hide_progress)
epoch_dict = {"epoch": epoch, "accuracy": accuracy}
global_progress.set_postfix(epoch_dict)
logger.update_scalers(epoch_dict)
checkpoint = {
"net": model.state_dict(),
'optimizer': optimizer.state_dict(),
"epoch": epoch
}
if (epoch % args.train.save_interval) == 0:
torch.save({
'epoch': epoch + 1,
'state_dict': model.module.state_dict()
}, './checkpoint/exp_0223_triple_400_proj3/ckpt_best_%s.pth' % (str(epoch)))
# Save checkpoint
model_path = os.path.join(args.ckpt_dir,
f"{args.name}_{datetime.now().strftime('%m%d%H%M%S')}.pth") # datetime.now().strftime('%Y%m%d_%H%M%S')
torch.save({
'epoch': epoch + 1,
'state_dict': model.module.state_dict()
}, model_path)
print(f"Model saved to {model_path}")
with open(os.path.join(args.log_dir, f"checkpoint_path.txt"), 'w+') as f:
f.write(f'{model_path}')
if args.eval is not False:
args.eval_from = model_path
linear_eval(args)
if __name__ == "__main__":
args = get_args()
main(device=args.device, args=args)
completed_log_dir = args.log_dir.replace('in-progress', 'debug' if args.debug else 'completed')
os.rename(args.log_dir, completed_log_dir)
print(f'Log file has been saved to {completed_log_dir}')