-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrmv.py
84 lines (70 loc) · 2.71 KB
/
rmv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import pandas as pd
from sklearn.svm import SVC
from sklearn_rvm import EMRVC
from MyModel import MyModel
import time
import psutil
import sklearn.model_selection as ms
import sklearn.metrics as met
def classify(file):
print(file)
df = pd.read_csv(file)
X = df.drop(['idx', 'label'], axis=1).values
y = df['label'].values
print(X.shape)
model = []
#model.append(MyModel("SVM rbf", SVC()))
#model.append(MyModel("SVM linear", SVC(kernel='linear')))
#model.append(MyModel("SVM sigmoid", SVC(kernel='sigmoid')))
#model.append(MyModel("SVM poly 2", SVC(kernel='poly', degree=2)))
#model.append(MyModel("SVM poly 3", SVC(kernel='poly')))
model.append(MyModel("RVM rbf", EMRVC()))
model.append(MyModel("RVM linear", EMRVC(kernel='linear')))
model.append(MyModel("RVM sigmoid", EMRVC(kernel='sigmoid')))
model.append(MyModel("RVM poly 2", EMRVC(kernel='poly', degree=2)))
model.append(MyModel("RVM poly 3", EMRVC(kernel='poly')))
print("prepare")
kfold = ms.KFold(n_splits=4, random_state=0, shuffle=True)
for train_ndx, test_ndx in kfold.split(X):
train_X, test_X, train_y, test_y = X[train_ndx], X[test_ndx], y[train_ndx], y[test_ndx]
for md in model:
print(md.name)
st = time.time()
sm = psutil.virtual_memory().used
sp = psutil.cpu_percent(interval=1)
md.clf.fit(train_X, train_y)
test_predict = md.clf.predict(test_X)
et = time.time()
em = psutil.virtual_memory().used
ep = psutil.cpu_percent(interval=1)
md.time.append(et - st)
md.memo.append(abs(em - sm))
md.proc.append(abs(ep - sp))
md.accu.append(met.accuracy_score(test_y, test_predict))
md.prec.append(met.precision_score(test_y, test_predict))
md.recc.append(met.recall_score(test_y, test_predict))
md.f1.append(met.f1_score(test_y, test_predict))
mat = (met.confusion_matrix(test_y, test_predict))
md.mat += mat
print(file)
for md in model:
print(md.name)
print(np.mean(md.time))
print(np.mean(md.memo))
print(np.mean(md.proc))
print(np.mean(md.accu))
print(np.mean(md.prec))
print(np.mean(md.recc))
print(np.mean(md.f1))
print(md.mat)
print()
#classify("sc2vector.csv")
#classify("sc2tfidf.csv")
#classify("sc2tfidf_vector.csv")
#classify("ts2vector.csv")
#classify("ts2tfidf.csv")
#classify("ts2tfidf_vector.csv")
#classify("sc_ts2vector.csv")
#classify("sc_ts2tfidf.csv")
classify("sc_ts2tfidf_vector.csv")