You can install the development version of deltatest from GitHub with:
# install.packages("remotes")
remotes::install_github("hoxo-m/deltatest")
library(dplyr)
library(deltatest)
n_user <- 2000
set.seed(314)
df <- generate_dummy_data(n_user) |>
mutate(group = if_else(group == 0L, "control", "treatment")) |>
group_by(user_id, group) |>
summarise(click = sum(metric), pageview = n(), .groups = "drop")
df
#> # A tibble: 2,000 × 4
#> user_id group click pageview
#> <int> <chr> <int> <int>
#> 1 1 treatment 1 6
#> 2 2 treatment 2 11
#> 3 3 control 0 17
#> 4 4 control 4 12
#> 5 5 control 5 10
#> 6 6 control 1 15
#> 7 7 control 2 6
#> 8 8 treatment 2 11
#> 9 9 treatment 2 16
#> 10 10 control 0 17
#> # ℹ 1,990 more rows
deltatest(df, click / pageview, by = group)
#>
#> Two Sample Z-test Using the Delta Method
#>
#> data: click/pageview by group
#> z = 0.89707, p-value = 0.3697
#> alternative hypothesis: true difference in means between control and treatment is not equal to 0
#> 95 percent confidence interval:
#> -0.009110998 0.024490289
#> sample estimates:
#> mean in control mean in treatment difference
#> 0.241848567 0.249538212 0.007689645
library(ggplot2)
set.seed(314)
p_values <- NULL
for (i in 1:5000) {
df <- generate_dummy_data(n_user) |>
group_by(group) |>
summarise(click = sum(metric), pageview = n(), .groups = "drop")
result <- prop.test(df$click, df$pageview, correct = FALSE)
p_values[i] <- result$p.value
}
df <- data.frame(p_value = p_values) |>
mutate(range = cut(p_value, breaks = seq(0, 1, by = 0.05))) |>
group_by(range) |>
summarise(p = factor(ceiling(max(p_value) * 20) / 20), n = n()) |>
mutate(prop = n / sum(n))
ggplot(df, aes(p, prop)) +
geom_col() +
geom_hline(yintercept = 0.05, color = "red") +
scale_y_continuous(breaks = seq(0, 1, by = 0.02), minor_breaks = NULL) +
xlab("p-value") + ylab("proportion")
set.seed(314)
p_values <- NULL
for (i in 1:5000) {
df <- generate_dummy_data(n_user) |>
group_by(user_id, group) |>
summarise(click = sum(metric), pageview = n(), .groups = "drop")
result <- deltatest(df, click / pageview, by = group)
p_values[i] <- result$p.value
}
df <- data.frame(p_value = p_values) |>
mutate(range = cut(p_value, breaks = seq(0, 1, by = 0.05))) |>
group_by(range) |>
summarise(p = factor(ceiling(max(p_value) * 20) / 20), n = n()) |>
mutate(prop = n / sum(n))
ggplot(df, aes(p, prop)) +
geom_col() +
geom_hline(yintercept = 0.05, color = "red") +
scale_y_continuous(breaks = seq(0, 1, by = 0.01), minor_breaks = NULL) +
xlab("p-value") + ylab("proportion")
- Deng, A., Knoblich, U., & Lu, J. (2018). Applying the Delta Method in Metric Analytics: A Practical Guide with Novel Ideas. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
- Deng, A., Lu, J., & Litz, J. (2017). Trustworthy Analysis of Online A/B Tests: Pitfalls, challenges and solutions. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.