-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathprediction_emb_cpu.py
92 lines (81 loc) · 3.5 KB
/
prediction_emb_cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import numpy as np
from torch.autograd import Variable
from capsule_network_emb_cpu import *
import pickle
from sys import argv
def pred_from_model(conv1_kernel,
conv2_kernel,
param_path,
RTdata,
PRED_BATCH):
'''
write extracted features as np.array to pkl
'''
model = CapsuleNet(conv1_kernel,conv2_kernel)
model.load_state_dict(torch.load(param_path))
if True == CUDA:
model.cuda()
print('>> note: predicting using the model:',param_path)
pred = np.array([])
# TODO: handle int
# TODO: if Batch == 16, peptide number cannot be: 16X+1
pred_batch_number = int(RTdata.test.shape[0] / PRED_BATCH)+1
for bi in range(pred_batch_number):
test_batch = Variable(RTdata.test[bi*PRED_BATCH:(bi+1)*PRED_BATCH,:])
if True == CUDA:
test_batch = test_batch.cuda()
pred_batch = model(test_batch)
pred = np.append(pred, pred_batch[0].data.cpu().numpy().flatten())
if False == CUDA:
pred_batch = model(test_batch)
pred = np.append(pred, pred_batch[0].data.numpy().flatten())
return RTdata.test_label.numpy().flatten(), pred
import copy
def ensemble(obse,pred_list):
pred_ensemble = copy.deepcopy(pred_list[0])
for i in range(len(pred_list)-1):
pred_ensemble += pred_list[i+1]
pred_ensemble = pred_ensemble/len(pred_list)
print('[ensemble %d] %.5f %.5f' %(len(pred_list),Pearson(obse,pred_ensemble),Delta_t95(obse,pred_ensemble)))
return pred_ensemble
def ensemble1round(job_seed_round,conv1,conv2,S):
obse,pred1=pred_from_model(conv1,conv2,job_seed_round+'epoch_10.pt',RTtest,1000)
_,pred2=pred_from_model(conv1,conv2,job_seed_round+'epoch_12.pt',RTtest,1000)
_,pred3=pred_from_model(conv1,conv2,job_seed_round+'epoch_14.pt',RTtest,1000)
_,pred4=pred_from_model(conv1,conv2,job_seed_round+'epoch_16.pt',RTtest,1000)
_,pred5=pred_from_model(conv1,conv2,job_seed_round+'epoch_18.pt',RTtest,1000)
obse,pred1,pred2,pred3,pred4,pred5=obse*S,pred1*S,pred2*S,pred3*S,pred4*S,pred5*S
pred_ensemble=ensemble(obse,[pred1,pred2,pred3,pred4,pred5])
return obse, pred_ensemble
scale = int(argv[1])
round1model = argv[2] # 'work/dia/59/1/'
conv1 = int(argv[3])
# round2dir = argv[4] # 'work/dia/59/2/'
# conv2 = int(argv[5])
# round3dir = argv[6] # 'work/dia/59/3/'
# conv3 = int(argv[7])
# result_ensemble = argv[8]
# print(argv)
test_path = argv[4]
# test_path = 'data/dia_test_59.txt' # same as in capsule_network.py
# RTtest = RTdata(dictionary, max_length, test_path)
# desparse(RTtest)
corpus = Corpus(dictionary, # format: Corpus(dictionary, train_path, val_path='', test_path='', pad_length=0)
train_path,
test_path=test_path,
pad_length=max_length)
RTtest = corpus
# obse, pred_r1 = ensemble1round(round1dir,conv1,conv1,scale)
# _, pred_r2 = ensemble1round(round2dir,conv2,conv2,scale)
# _, pred_r3 = ensemble1round(round3dir,conv3,conv3,scale)
# pred_ensemble = ensemble(obse,[pred_r1,pred_r2,pred_r3])
obse,pred1=pred_from_model(conv1,conv1,round1model,RTtest,15)
pred_ensemble = pred1*scale
obse = obse*scale
with open(test_path+'.pred', 'w') as fo:
fo.write('observed\tpredicted\n')
for i in range(len(obse)):
fo.write('%.5f\t%.5f\n' % (obse[i],pred_ensemble[i]))
print(">> note: prediction done!")
# usage: python prediction.py 46 'work/dia/10/1/epoch_20.pt' 10 'data/SCX.txt'