-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_energy.py
138 lines (117 loc) · 4.16 KB
/
analysis_energy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# %%
from pathlib import Path
from numpy.lib.function_base import disp
base_dir = Path("/home/mxu02/dock37-test/test_dude")
# %%
target = "aa2ar"
# %%
ligands_smi = base_dir / target / "dock37/ligand/actives_final.ism"
decoys_smi = base_dir / target / "dock37/ligand/decoys_final.ism"
# %%
import pandas as pd
ligands = pd.read_csv(ligands_smi, sep=" ", header=None, names=["smiles", "number", "name"])
# %%
decoys = pd.read_csv(decoys_smi, sep=" ", header=None, names=["smiles", "name"])
# %%
from IPython.display import display
decoys["class"] = "decoy"
ligands["class"] = "active"
data = pd.concat([decoys, ligands], ignore_index=True)
# display(data.head())
# display(data.tail())
#%%
from rdkit.Chem import PandasTools
PandasTools.AddMoleculeColumnToFrame(data, smilesCol="smiles", molCol="mol")
# %%
from rdkit import Chem
def PROP(mol):
from rdkit.Chem import Descriptors
mw = Descriptors.MolWt(mol)
logp = Descriptors.MolLogP(mol)
rotb = Descriptors.NumRotatableBonds(mol)
hbd = Descriptors.NumHDonors(mol)
hba = Descriptors.NumHAcceptors(mol)
q = Chem.GetFormalCharge(mol)
return tuple([mw, logp, rotb, hbd, hba, q])
# %%
prop_names = ["MW", "logP", "rotB", "HBD", "HBA", "Q"]
props = []
for m in data.mol:
props.append(PROP(m))
props_T = list(zip(*props))
for p_name, p_values in zip(prop_names, props_T):
data[p_name] = p_values
data.head()
# %%
import seaborn as sns
# required seaborn 0.11
sns.histplot(data, x="MW", hue="class")
# %%
sns.histplot(data, x="MW", hue="class", stat="density", common_norm=False)
# %%
from matplotlib import pyplot as plt
fig, axes = plt.subplots(nrows=6, figsize=(12, 24))
for name, ax in zip(prop_names, axes.flat):
sns.histplot(data, x=name, hue="class", stat="density", common_norm=False, ax=ax)
# %%
# vina_result = "/home/mxu02/dock37-test/test_dude/andr/vina/extract_all.sort.uniq.txt"
vina_result = base_dir / target / "vina/output/extract_all.sort.uniq.txt"
# print(vina_result.read_text()[:300])
# %%
import re
vina_energies_dict = {}
with open(vina_result) as f:
for line in f:
fields = line.split()
name = fields[2]
energy = fields[-1]
vina_energies_dict[name] = float(energy)
# %%
vina_energies = [vina_energies_dict.get(name, None) for name in data.name]
data["vina"] = vina_energies
data.head()
# %%
sns.histplot(data, x="vina", hue="class", stat="density", common_norm=False, kde=True)
# fig=plt.gcf()
# fig.savefig("/home/mxu02/dock37-test/test_dude/aa2ar/aa2ar_vina_energy.png", dpi=125, bbox_inches='tight')
# %%
outlier_mask = data.vina > 0
vina_outliers = data[outlier_mask]
data = data[~outlier_mask] # including nan
print(f"remove {len(vina_outliers)} vina outliers")
display(vina_outliers)
display(vina_outliers[["name", "mol"]])
# %%
sns.histplot(data, x="vina", hue="class", stat="density", common_norm=False, kde=True)
# %%
fig=sns.pairplot(data, x_vars=["vina"] + prop_names, y_vars=["vina"], hue="class")
fig=plt.gcf()
fig.savefig("/home/mxu02/dock37-test/test_dude/aa2ar/aa2ar_vina_scatter.png", dpi=125, bbox_inches='tight')
# %%
# dock_result = "/home/mxu02/dock37-test/test_dude/andr/dock37/dock/extract_all.sort.uniq.txt"
dock_result = base_dir / target / "dock37/extract_all.sort.uniq.txt"
# print(dock_result.read_text()[:300])
# %%
dock_energies_dict = {}
with open(dock_result) as f:
for line in f:
fields = line.split()
name = fields[2]
energy = fields[-1]
dock_energies_dict[name] = float(energy)
dock_energies = [dock_energies_dict.get(name, None) for name in data.name]
data["dock"] = dock_energies
# data.head()
# %%
sns.histplot(data, x="dock", hue="class", stat="density", common_norm=False, kde=True)
# fig=plt.gcf()
# fig.savefig("/home/mxu02/dock37-test/test_dude/aa2ar/aa2ar_dock_energy.png", dpi=125, bbox_inches='tight')
# %%
fig=sns.pairplot(data, x_vars=["dock"] + prop_names, y_vars=["dock"], hue="class")
fig=plt.gcf()
fig.savefig("/home/mxu02/dock37-test/test_dude/aa2ar/aa2ar_dock_scatter.png", dpi=125, bbox_inches='tight')
# %%
fig= sns.scatterplot(data=data, x="vina", y="dock", hue="class")
fig=plt.gcf()
fig.savefig("/home/mxu02/dock37-test/test_dude/aa2ar/aa2ar_dock_vina.png", dpi=125, bbox_inches='tight')
# %%