-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathapp.py
76 lines (62 loc) · 2.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from dotenv import load_dotenv
from PyPDF2 import PdfReader
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import get_openai_callback
def load_openai_api_key():
dotenv_path = "openai.env"
load_dotenv(dotenv_path)
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError(f"Unable to retrieve OPENAI_API_KEY from {dotenv_path}")
return openai_api_key
def process_text(text):
# Split the text into chunks using Langchain's CharacterTextSplitter
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# Convert the chunks of text into embeddings to form a knowledge base
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
knowledgeBase = FAISS.from_texts(chunks, embeddings)
return knowledgeBase
def main():
st.title("📄PDF Summarizer")
st.write("Created by Hilman Singgih Wicaksana")
st.divider()
try:
os.environ["OPENAI_API_KEY"] = load_openai_api_key()
except ValueError as e:
st.error(str(e))
return
pdf = st.file_uploader('Upload your PDF Document', type='pdf')
if pdf is not None:
pdf_reader = PdfReader(pdf)
# Text variable will store the pdf text
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Create the knowledge base object
knowledgeBase = process_text(text)
query = "Summarize the content of the uploaded PDF file in approximately 3-5 sentences. Focus on capturing the main ideas and key points discussed in the document. Use your own words and ensure clarity and coherence in the summary."
if query:
docs = knowledgeBase.similarity_search(query)
OpenAIModel = "gpt-3.5-turbo-16k"
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
chain = load_qa_chain(llm, chain_type='stuff')
with get_openai_callback() as cost:
response = chain.run(input_documents=docs, question=query)
print(cost)
st.subheader('Summary Results:')
st.write(response)
if __name__ == '__main__':
main()