-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
266 lines (236 loc) · 9.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright (c) Hangzhou Hikvision Digital Technology Co., Ltd. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import logging
import argparse
import torchvision
import torch.nn as nn
from models.SSL import SSL2d
from models.FENet import FENet
import torch.optim as optim
from datetime import datetime
import torch.nn.functional as F
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torchvision import transforms, utils
import torchvision.transforms as transforms
from models.auto_augment import AutoAugment, Cutout
from torch.utils.data import Dataset, DataLoader
from utils import get_logger
from torchsampler import ImbalancedDatasetSampler
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--train', type=str, default='./ImageNetOrigin/train', help='training dataset')
parser.add_argument('--val', type=str, default='./ImageNetOrigin/val2', help='validation dataset')
parser.add_argument('--nesterov', default=True, type=bool)
parser.add_argument('--lr', default=0.6, type=float, help='learning rate')
parser.add_argument('--shift_weight_decay', default=4e-5, type=float, help='weight_decay')
parser.add_argument('--weight_decay', default=4e-5, type=float, help='weight_decay')
parser.add_argument("--results_dir", default='./results/', type=str, help=" ")
parser.add_argument('--epoch', '-e', default=480, type=int, help='epoch number')
parser.add_argument('--batch_size', '-b', default=1024, type=int, help='batch size')
parser.add_argument('--test_batch_size', default=1000, type=int, help='test_batch_size')
parser.add_argument('--num_workers', default=16, type=int, help='num_workers')
parser.add_argument('--resume', '-r', help='resume from checkpoint')
parser.add_argument("--data_dir", default='./ImageNetOrigin/', type=str, help=" ")
parser.add_argument("--mode", default='Train', type=str, help=" ")
parser.add_argument('--auto_augment', '-a', default=False, type=bool, help='auto_augment')
parser.add_argument('--reduction', help='Amount to reduce raw resnet model by', default=1.0, type=float)
args = parser.parse_args()
# log and checkpoint
path = args.results_dir + datetime.now().strftime('%d%H%M%S') + '/'
if not os.path.exists(path):
os.makedirs(path)
check_path = path + 'FENet_imagenet.t7'
log_path = path + 'FENet_imagenet.log'
logger = get_logger(log_path)
use_cuda = torch.cuda.is_available()
best_acc = 0.0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
logger.info(args)
logger.info('==> Preparing data..')
# data augmentation
transform_train = [
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
]
if args.auto_augment:
transform_train.append(AutoAugment())
transform_train.extend([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
transform_train = transforms.Compose(transform_train)
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# data loader
train_data = torchvision.datasets.ImageFolder(args.train, transform=transform_train)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=ImbalancedDatasetSampler(train_data),
shuffle=False, num_workers=16, pin_memory=True)
total_t = len(train_data)
test_data = torchvision.datasets.ImageFolder(args.val, transform=transform_test)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size,
shuffle=False, num_workers=args.num_workers)
total_v = len(test_data)
logger.info('Training / Testing data number: %d / %d' % (total_v, total_t))
print(len(train_loader.dataset))
logger.info('Using path: %s' % path)
# build model
if args.resume:
# Load checkpoint.
logger.info('==> Resuming from checkpoint.. %s' % args.resume)
checkpoint = torch.load(args.resume)
net = checkpoint['net']
best_acc = float(checkpoint['acc'])
start_epoch = checkpoint['epoch']
else:
logger.info('==> Building model..')
net = FENet(reduction=args.reduction)
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(
net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# optimizer
criterion = nn.CrossEntropyLoss()
logger.info(net)
shift_params = []
rest_params = []
for module in net.modules():
if isinstance(module, SSL2d):
shift_params += module.parameters()
elif isinstance(module, nn.Conv2d) or isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.AvgPool2d):
rest_params += module.parameters()
optimizer = optim.SGD([{'params': shift_params, 'weight_decay': args.shift_weight_decay},
{'params': rest_params, 'weight_decay': args.weight_decay}],
lr=args.lr, momentum=0.9, nesterov=args.nesterov)
optimizer1 = optim.SGD([{'params': shift_params, 'weight_decay': 0},
{'params': rest_params, 'weight_decay': args.weight_decay}],
lr=args.lr, momentum=0.9, nesterov=args.nesterov)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epoch, eta_min=0.00001)
lr_scheduler1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer1, T_max=args.epoch, eta_min=0.00001)
lr = optimizer.param_groups[0]['lr']
for i in range(start_epoch):
lr_scheduler.step()
for i in range(max(int(args.epoch / 2), start_epoch)):
lr_scheduler1.step()
# train
def train(epoch):
logger.info('Epoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
if epoch < args.epoch / 2:
optimizer.zero_grad()
else:
optimizer1.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
if epoch < args.epoch / 2:
optimizer.step()
else:
optimizer1.step()
train_loss += loss.item() * targets.size(0)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
if epoch < args.epoch / 2:
lr = optimizer.param_groups[0]['lr']
lr_scheduler.step()
else:
lr = optimizer1.param_groups[0]['lr']
lr_scheduler1.step()
logger.info(
'Train: Loss: {:.3f} | Acc: {:.3f} ({}/{}) | Lr: {}'.format(train_loss / total,
100. * float(correct) / float(total),
correct, total, lr))
# test
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(test_loader):
with torch.no_grad():
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item() * targets.size(0)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
logger.info(
'Test: Loss: {:.3f} | Acc: {:.3f} ({}/{})'.format(test_loss / total, 100.*float(correct)/float(total), correct, total))
# Save checkpoint.
acc = 100. * float(correct) / float(total)
if acc > best_acc:
logger.info('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
torch.save(state, check_path)
logger.info('* Saved checkpoint to %s' % check_path)
best_acc = acc
# demo
def demo():
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(test_loader):
with torch.no_grad():
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item() * targets.size(0)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
logger.info(
'Test: Loss: {:.3f} | Acc: {:.3f} ({}/{})'.format(test_loss / total, 100. * float(correct) / float(total),
correct, total))
# main
if args.mode == 'Train':
for epoch in range(start_epoch, args.epoch):
if epoch >= round(args.epoch / 2):
# Freeze shift layer learning
for module in net.modules():
if isinstance(module, SSL2d):
for _, para in module.named_parameters():
para.requires_grad = False
train(epoch)
test(epoch)
else:
demo()