-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestData.hs
256 lines (222 loc) · 6.35 KB
/
TestData.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
module TestData where
import Data.List
import Formula
import DPLL
-- Some useful predefined variables
a, b, c, d, e, f, g :: Formula
a = Var "a"
b = Var "b"
c = Var "c"
d = Var "d"
e = Var "e"
f = Var "f"
g = Var "g"
-- Simple test formulae
f1, f2, f3, f4, f5, f6, f7, f8, f9 :: Formula
f1 = Not (Not a)
f2 = Not (Not (Not (Not a)))
f3 = a `And` b
f4 = Not (Not a `And` Not b)
f5 = And (Not a) (b `Or` c)
f6 = Not (b `Or` (a `And` (Not c)))
f7 = (a `Or` (Not b)) `Or` (a `And` b)
f8 = (a `And` (Not (b `Or` c))) `Or` (Not d)
f9 = Not a `And` ((Not b `And` c) `Or` (Not c `And` d))
-- CNF forms of the above
c1, c2, c3, c4, c5, c6, c7, c8, c9 :: CNF
c1 = a
c2 = a
c3 = a `And` b
c4 = a `Or` b
c5 = (Not a) `And` (b `Or` c)
c6 = (Not b) `And` (Not a `Or` c)
c7 = (a `Or` Not b `Or` a) `And` ((a `Or` Not b) `Or` b)
c8 = (a `Or` Not d) `And` ((Not b `Or` Not d) `And` (Not c `Or` Not d))
c9 = (Not a `And` (((Not b `Or` Not c) `And` (c `Or` Not c)) `And`
((Not b `Or` d) `And` (c `Or` d))))
-- Some additional CNFs and their flattened representations, for testing
-- propagation and dpll
cnf0 :: CNF
cnf0
= a `And` a
cnf0Rep
= [[1],
[1]]
cnf1 :: CNF
cnf1
= foldr1 And ors
where
ors = [foldr1 Or [a, b, c],
foldr1 Or [a, b, Not c],
foldr1 Or [a, Not b, c],
foldr1 Or [a, Not b, Not c],
foldr1 Or [Not a, b, c],
foldr1 Or [Not a, b, Not c],
foldr1 Or [Not a, Not b, c]]
cnf1Rep :: CNFRep
cnf1Rep
= [[1, 2, 3],
[1, 2, -3],
[1, -2, 3],
[1, -2, -3],
[-1, 2, 3],
[-1, 2, -3],
[-1, -2, 3]]
cnf2 :: CNF
cnf2
= foldr1 And ors
where
ors = [foldr1 Or [Not a, Not d],
foldr1 Or [b, a, e],
foldr1 Or [c, Not b],
d,
foldr1 Or [c, Not e],
foldr1 Or [Not c, Not g],
foldr1 Or [a, g, f],
foldr1 Or [Not c, f]]
cnf2Rep :: CNFRep
cnf2Rep
= [[-1, -4],
[2, 1, 5],
[3, -2],
[4],
[3, -5],
[-3, -7],
[1, 7, 6],
[-3, 6]]
cnf3 :: CNF
cnf3
= foldr1 And ors
where
ors = [foldr1 Or [Not c, Not g],
foldr1 Or [b, c, e],
foldr1 Or [a, Not b],
foldr1 Or [a, Not e],
foldr1 Or [Not a, Not d],
foldr1 Or [c, d, f],
foldr1 Or [Not a, Not f],
g]
cnf3Rep :: CNFRep
cnf3Rep
= [[-3, -7],
[2, 3, 5],
[1, -2],
[1, -5],
[-1, -4],
[3, 4, 6],
[-1, -6],
[7]]
-- This is a variant of the $n$-queens problem below, but with rooks instead
-- of queens. This example is for a 2x2 board. There are two solutions.
cnf4 :: CNF
cnf4
= foldr1 And ors
where
ors = [foldr1 Or [Not a, Not b],
foldr1 Or [Not a, Not c],
foldr1 Or [Not b, Not d],
foldr1 Or [Not c, Not d],
a `Or` b,
c `Or` d]
cnf4Rep :: CNFRep
cnf4Rep
= [[-1, -2],
[-1, -3],
[-2, -4],
[-3, -4],
[1, 2],
[3, 4]]
--------------------------------------------------------------------------
-- Generates constraints for the n-queens problem as a propositional
-- formula in CNF
queensCNF :: Int -> CNF
queensCNF n
= foldr1 And (concatMap (\f -> f n) [cols, rows, diag1, diag1', diag2, diag2'] ++
qcol n)
where
pos :: Int -> Int -> Int -> Formula
pos n i j
= Var ("x" ++ show ((i - 1) * n + j))
cols :: Int -> [CNF]
cols n
= [(Not (pos n i j)) `Or` (Not (pos n i k)) |
i <- [1..n], j <- [1..n], k <- [j+1..n]]
rows :: Int -> [CNF]
rows n
= [(Not (pos n j i)) `Or` (Not (pos n k i)) |
i <- [1..n], j <- [1..n], k <- [j+1..n]]
diag1 :: Int -> [CNF]
diag1 n
= [(Not (pos n (d + j) j)) `Or` (Not (pos n (d + k) k)) |
d <- [0..n-2], j <- [1..n-d], k <- [j+1..n-d]]
diag1' :: Int -> [CNF]
diag1' n
= [(Not (pos n j (j - d))) `Or` (Not (pos n k (k - d))) |
d <- [negate (n-2)..(-1)], j <- [1..n+d], k <- [j+1..n+d]]
diag2 :: Int -> [CNF]
diag2 n
= [(Not (pos n j (d - j))) `Or` (Not (pos n k (d - k))) |
d <- [3..n+1], j <- [1..d-1], k <- [j+1..d-1]]
diag2' :: Int -> [CNF]
diag2' n
= [(Not (pos n j (d - j))) `Or` (Not (pos n k (d - k))) |
d <- [(n+2)..2*n-1], j <- [d-n..n], k <- [j+1..n]]
qcol :: Int -> [CNF]
qcol n
= [foldr1 Or [pos n i j | j <- [1..n]] | i <- [1..n]]
-- As above, but generating the flattened representation directly.
-- Note: it is not in general the case that flatten (queensCNF n) ==
-- queensCNFRep n because of the variable numbering convention use here.
queensCNFRep :: Int -> CNFRep
queensCNFRep n
= concatMap (\f -> f n) [cols, rows, diag1, diag1', diag2, diag2', qcol]
where
pos :: Int -> Int -> Int -> Int
pos n i j
= (i - 1) * n + j
cols :: Int -> CNFRep
cols n
= [[negate (pos n i j), negate (pos n i k)] |
i <- [1..n], j <- [1..n], k <- [j+1..n]]
rows :: Int -> CNFRep
rows n
= [[negate (pos n j i), negate (pos n k i)] |
i <- [1..n], j <- [1..n], k <- [j+1..n]]
diag1 :: Int -> CNFRep
diag1 n
= [[negate (pos n (d + j) j), negate (pos n (d + k) k)] |
d <- [0..n-2], j <- [1..n-d], k <- [j+1..n-d]]
diag1' :: Int -> CNFRep
diag1' n
= [[negate (pos n j (j - d)), negate (pos n k (k - d))] |
d <- [negate (n-2)..(-1)], j <- [1..n+d], k <- [j+1..n+d]]
diag2 :: Int -> CNFRep
diag2 n
= [[negate (pos n j (d - j)), negate (pos n k (d - k))] |
d <- [3..n+1], j <- [1..d-1], k <- [j+1..d-1]]
diag2' :: Int -> CNFRep
diag2' n
= [[negate (pos n j (d - j)), negate (pos n k (d - k))] |
d <- [(n+2)..2*n-1], j <- [d-n..n], k <- [j+1..n]]
qcol :: Int -> CNFRep
qcol n
= [[pos n i j | j <- [1..n]] | i <- [1..n]]
-- Displays one board on the assumption that the variables are numbered in
-- increasing order from top left to bottom right, e.g. 1 to 64 for 8-queens.
printBoard :: [Int] -> Int -> IO()
printBoard
= show . sortBy (\x y -> compare (abs x) (abs y))
where
show [] _
= putStrLn ""
show sol n
= do
putStrLn (toString row)
show rows n
where
(row, rows) = splitAt n sol
toString = concatMap (\v -> if v < 0 then "O " else "X ")
-- Optional extra...
printAllBoards :: [[Int]] -> Int -> IO()
printAllBoards sol n
= mapM_ (flip printBoard n) sol